Branching Ratios and Polarization in $\mathcal{B} \rightarrow V \sim, V \mathcal{A}, \mathcal{A} \mathcal{A}$ Decays

Hai-Yang Cheng

Academia Sinica, Taipei

in collaboration with Kwei-Chou Yang
arVix: 0805.0329 [hep-ph]

CERN Theory Institute
May 20, 2008

Introduction

■ We have studied $B \rightarrow S(P, V)$, AP before. It is natural to generalize to AV,AA and revisit VV modes
-- Generalization is highly nontrivial: ${ }^{3} P_{1} \&{ }^{1} P_{1}$ axial mesons which have very different decay constants \& light cone distribution amplitudes
■ Polarization puzzle in $\overline{\mathrm{B}} \rightarrow \mathrm{VV}$ decays

$$
\bar{A}_{0}: \bar{A}_{-}: \bar{A}_{+}=1: \frac{\Lambda}{m_{b}}:\left(\frac{\Lambda}{m_{b}}\right)^{2}
$$

In transversity basis $A_{\perp}=\left(A^{-}+A^{+}\right) / \sqrt{2}, \quad A_{\|}=\left(A^{-}-A^{+}\right) / \sqrt{2}$

$$
f_{T} \equiv f_{\|}+f_{\perp}=1-f_{L}=O\left(m_{V}^{2} / m_{B}^{2}\right), \quad f_{\|} / f_{\perp}=1+O\left(m_{V} / m_{B}\right)
$$

Why is f_{T} sizable ~ 0.5 in $B \rightarrow K^{*} \phi$ decays ?

\bar{B}-> VV polarizations

The longitudinal component dominates

$$
A^{00} \gg A^{--} \gg A^{++}
$$

Polarization Anomaly: Some Ad hoc Models in SM

- Annihilation diagram (hep-ph/0405134)

Kagan formally suppressed $1 / m_{b}$ not conclusive (vary free parameters)

- Transverse gluon from $b \rightarrow s \mathrm{~g}$ (hep-ph/0408007) analogy with γ from $B \rightarrow K^{*} \gamma$ Hou, Nagashima seems to be suppressed, not conclusive

- EM penguin (hep-ph/0512258) Be
similar polarization to $B \rightarrow K^{*} \gamma$
appears only for neutral vector mesons

- Charming penguins (hep-ph/0401188)

Bauer, Pirjol, Rothstein, Stewart rely on free parameters, not conclusive

- Long-distance rescattering (hep-ph/0409317) HYC,Chua,Soni; model-dependent, constrained by other data expect $f_{L} \sim f_{\|} \gg f_{\perp}$ (?)

Possible New Physics in Polarization

Axial-vector mesons

${ }^{1} \mathbf{P}_{1}\left(\mathbf{1}^{+-}\right)$

For $\mathrm{J}^{\mathrm{P}}=1^{+}$axial-vector mesons, two nonets have been observed:

- ${ }^{3} \mathrm{P}_{1}$ nonet ($\mathrm{S}=1$)
$I=0: f_{1}(1285), f_{1}(1420), I=1 / 2: K_{1 A}, I=1: a_{1}(1260)$,
- ${ }^{1} \mathrm{P}_{1}$ nonet ($\mathrm{S}=0$)
$I=0: h_{1}(1170), h_{1}(1380), I=1 / 2: K_{1 B}, I=1: b_{1}(1235)$

$$
\mathrm{K}_{1 \mathrm{~A}}, \mathrm{~K}_{1 \mathrm{~B}} \rightarrow \mathrm{~K}_{1}(1270), \mathrm{K}_{1}(1400)
$$

Mixing angles

$\square{ }^{3} \mathbf{P}_{1}$ states $f_{1}(\mathbf{1 2 8 5}) \& f_{1}(1420)$ have mixing [so are ${ }^{1} P_{1}$ states $h_{1}(1170) \& h_{1}(1380)$]

$$
\begin{aligned}
\left|f_{1}(1285)\right\rangle & =\left|f_{1}\right\rangle \cos \theta_{3_{P_{1}}}+\left|f_{8}\right\rangle \sin \theta_{3_{P_{1}}},
\end{aligned}\left|f_{1}(1420)\right\rangle=-\left|f_{1}\right\rangle \sin \theta_{3_{P_{1}}}+\left|f_{8}\right\rangle \cos \theta_{3_{P_{1}}} .
$$

$\theta_{3 \mathrm{P} 1} \& \theta_{1 \mathrm{P} 1}$ depend on the $\mathrm{K}_{1 \mathrm{~A}}-\mathrm{K}_{1 \mathrm{~B}}$ mixing angle
■ No a_{1} and b_{1} mixing due to opposite C or G parities

■ In $\mathrm{SU}(3)$ limit, $\mathrm{K}_{1 \mathrm{~A}}$ \& $\mathrm{K}_{1 \mathrm{~B}}$ do not get mixed. However, they have admixture due to strange and light quark mass difference

$$
\begin{array}{ll}
K_{1}(1270)=K_{1 A} \sin \theta_{K}+K_{1 B} \cos \theta_{K} & \bar{K}_{1}(1270)=-K_{1 A} \sin \theta_{K}+K_{1 B} \cos \theta_{K} \\
K_{1}(1400)=K_{1 A} \cos \theta_{K}-K_{1 B} \sin \theta_{K} & \bar{K}_{1}(1400)=K_{1 A} \cos \theta_{K}+K_{1 B} \sin \theta_{K}
\end{array}
$$

■ PDG $\Rightarrow\left|\theta_{\mathrm{K}}\right| \approx 45^{\circ}$
\square Strong decays $K_{1}(1270), K_{1}(1400) \rightarrow K \rho, K^{*} \pi$ and their masses $\Rightarrow \theta_{K}= \pm 32^{\circ}, \pm 56^{\circ}$

$$
\tau \rightarrow K_{1}(1270) \nu_{\tau}, K_{1}(1400) \nu_{\tau} \Rightarrow \theta_{K}= \pm 37^{\circ}, \pm 58^{\circ} \quad\left(H Y C,{ }^{\prime} 03\right)
$$

Sign of θ_{K} depends on the phase convention of states. It can be inferred from $B \rightarrow K_{1} \gamma$ decays (HYC,Chua, '05; Yang, Hatanaka, '08)

$$
\begin{aligned}
& \frac{\mathcal{B}\left(B \rightarrow K_{1}(1270) \gamma\right)}{\mathcal{\mathcal { B }}\left(B \rightarrow K_{1}(1400) \gamma\right)}= \begin{cases}10.1 \pm 6.2(280 \pm 200) ; & \text { for } \theta_{K_{1}}=-58^{\circ}\left(-37^{\circ}\right), \\
0.02 \pm 0.02(0.05 \pm 0.04) ; & \text { for } \theta_{K_{1}}=+58^{\circ}\left(+37^{\circ}\right) .\end{cases} \\
& \operatorname{Br}\left(B^{+} \rightarrow K_{1}^{+}(1270) \gamma\right)=(4.3 \pm 0.9 \pm 0.9) \times 10^{-5} \\
& \operatorname{Br}\left(B^{+} \rightarrow K_{1}^{+}(1400) \gamma\right)<1.5 \times 10^{-5} \\
& \text { Belle measurement favors a } \\
& \text { negative } \theta
\end{aligned}
$$

Decay constants

$$
\langle A(p, \varepsilon)| \bar{q} \gamma_{\mu} \gamma_{5} q^{\prime}|0\rangle=i f_{A} m_{A} \varepsilon_{\mu}^{*}, \quad\langle A(p, \varepsilon)| \bar{q} \sigma_{\mu \nu} \gamma_{5} q^{\prime}|0\rangle=-f_{A}^{\perp}\left(\varepsilon_{\mu}^{*} p_{v}-\varepsilon_{v}^{*} p_{\mu}\right)
$$

- Decay constant of $b_{1}{ }^{\circ}$ vanishes due to $C\left[b_{1}\right]=-$ and $C A_{\mu} C^{-1}=A_{\mu}$
- Decay constant of charged $b_{1} \pm$ vanishes in isospin limit due to $G\left[b_{1}\right]=+$ \& $\mathrm{GA}_{\mu} \mathrm{G}^{-1}=-\mathrm{A}_{\mu^{*}}$. We obtain $\mathrm{f}\left[\mathrm{b}_{1}^{+}\right]=0.6 \pm 0.2 \mathrm{MeV}, \mathrm{f}\left[\mathrm{b}_{1}{ }^{-}\right]=-0.6 \pm 0.2 \mathrm{MeV}$
- In SU(3) limit

$$
M_{a}^{b}\left({ }^{3} P_{1}\right) \rightarrow M_{b}^{a}\left({ }^{3} P_{1}\right), \quad M_{a}^{b}\left({ }^{1} P_{1}\right) \rightarrow-M_{b}^{a}\left({ }^{1} P_{1}\right), \quad(a, b=1,2,3)
$$

Since $\left(A_{\mu}\right)_{a} b \rightarrow\left(A_{\mu}\right)_{b}{ }^{a}$ under charge conjugation $\Rightarrow f\left[{ }^{1} P_{1}\right]=0$ in SU(3) limit
By the same token, $f^{\perp}\left[{ }^{3} P_{1}\right]=0$ in the same limit

${ }^{3} P_{1}$	$a_{1}(1260)$	f_{1}	f_{8}	$K_{1 A}$
$f_{3} P_{1}$	238 ± 10	245 ± 13	239 ± 13	250 ± 13
${ }^{1} P_{1}$	$b_{1}(1235)$	h_{1}	h_{8}	$K_{1 B}$
$f_{1}^{\perp} P_{1}$	180 ± 8	180 ± 12	190 ± 10	190 ± 10

QCDSR by K.C. Yang

Form factors for $B \rightarrow A$

■ ISGW (Isgur-Scora-Grinstein-Wise) non-relativistic quark model ('89,'95)
■ Covariant light-front quark model (Chua,Hwang, HYC, '04)
Relativistic effects in B-to-light transitions at $\mathbf{q}^{2}=0$ are important
■ Light cone sum rules (K.C. Yang, '07,'08)
■ pQCD approach (W. Wang, R.H. Li, C.D. Lu, hep-ph/0711.0432)

	ISGW2	CQM	CLF	LQSR	pQCD	expt
$V_{0}^{B a_{1}}(0)$	1.01	1.20	0.13	0.30	0.34	~ 0.31

$B \rightarrow a_{1}$ form factors predicted by ISGW2 \& CQM models are too large!

ISGW2, QCDSR: $f\left[{ }^{1} P_{1}\right], f\left[{ }^{3} P_{1}\right]$ of the same sign
$B \rightarrow{ }^{1} P_{1}$ and $B \rightarrow{ }^{3} P_{1}$ form factors are opposite in sign
θ_{K} is negative
CLFQM, pQCD: $f\left[{ }^{1} P_{1}\right], f\left[{ }^{3} P_{1}\right]$ have opposite signs
$B \rightarrow{ }^{1} P_{1}$ and $B \rightarrow{ }^{3} P_{1}$ form factors of same sign
θ_{K} is positive

Light-cone distribution amplitudes (LCDAs)

chiral-even

$$
\begin{aligned}
& \langle A(P, \lambda)| \bar{q}_{1}(y) \gamma_{\mu} \gamma_{5} q_{2}(x)|0\rangle=i m_{A} \int_{0}^{1} d u e^{i(u p y+\bar{u} p x)}\left\{p_{\mu} \frac{\epsilon^{(\lambda) *} z}{p z} \Phi_{\|}(u)+\epsilon_{\perp \mu}^{(\lambda) *} g_{\perp}^{(a)}(u)\right\} \\
& \langle A(P, \lambda)| \bar{q}_{1}(y) \gamma_{\mu} q_{2}(x)|0\rangle=-i m_{A} \epsilon_{\mu \nu \rho \sigma} \epsilon_{(\lambda)}^{* \nu} p^{\rho} z^{\sigma} \int_{0}^{1} d u e^{i(u p y+\bar{u} p x)} g_{\perp}^{(v)}(u)
\end{aligned}
$$

chiral-odd

$$
\begin{aligned}
&\langle A(P, \lambda)| \bar{q}_{1}(y) \sigma_{\mu \nu} \gamma_{5} q_{2}(x)|0\rangle= \int_{0}^{1} d u e^{i(u p y+\bar{u} p x)}\left\{\left(\epsilon_{\perp \mu}^{(\lambda) *} p_{\nu}-\epsilon_{\perp \nu}^{(\lambda) *} p_{\mu}\right) \Phi_{\perp}(u) .\right. \\
&+\frac{m_{A}^{2} \epsilon^{(\lambda) *} z}{(p z)^{2}}\left(p_{\mu} z_{\nu}-p_{\nu} z_{\mu} h_{\|}^{(t)}(u)\right\}, \\
&\langle A(P, \lambda)| \bar{q}_{1}(y) \gamma_{5} q_{2}(x)|0\rangle=m_{A}^{2} \epsilon^{(\lambda) *} z \int_{0}^{1} d u e^{i(u p y+\bar{u} p x)} h_{\|}^{(u)}(u) .
\end{aligned}
$$

twist-2: $\Phi_{\|}, \Phi_{\perp}$
twist-3: $g_{\perp}{ }^{(v)}, g_{\perp}{ }^{(a)}, h_{\perp}{ }^{(t)}, h_{\|}{ }^{(p)}$ related to twist-2 ones via WandzuraWilczek relations (neglecting 3-parton distributions)

$$
\Phi_{\|}^{A}(u)=6 u \bar{u} f_{A}\left[a_{0}^{\|, A}+\sum_{i=1}^{\infty} a_{i}^{\|, A} C_{i}^{3 / 2}(2 u-1)\right] \quad C_{i}^{3 / 2} \text { : Gegenbauer polynomial }
$$

Since $f\left[b_{1}{ }^{\circ}\right]=0$, how to construct LCDA $\Phi_{\|}$for neutral b_{1} ?

Due to even G-parity, $\Phi_{\perp}, h_{\|}{ }^{(t)}, h_{\|}{ }^{(p)}$ are symmetric under $\mathbf{u} \rightarrow \mathbf{1}$-u, while $\Phi_{\|}, \mathbf{g}_{\perp}{ }^{(\mathrm{v})}, \mathrm{g}_{\perp}{ }^{(\mathrm{a})}$ are antisymmetric with the replacement $\mathbf{u} \rightarrow 1-\mathrm{u}$ in $\mathrm{SU}(3)$ limit

$$
\begin{aligned}
& \Phi_{\perp}^{1 P_{1}}(u)=f_{1}^{\perp} \frac{\perp}{P_{1}} u u \bar{u}\left\{1+3 a^{\perp}{\underset{f}{ }}^{\wedge} P_{1}(2 u-1)+a_{2}^{\perp}{ }^{1}{ }^{P_{1}} \frac{3}{2}\left[5(2 u-1)^{2}-1\right]\right\} \quad \int_{0}^{1} d u \Phi_{\perp}^{1} P_{1}(u)=f_{1}^{\perp}{ }_{P_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1} d u \Phi_{\|}^{{ }^{1} P_{1}}(u)=f / \int_{P_{1}} \quad \Rightarrow \quad f_{1 P_{1}}=f_{1 P_{1}}^{\perp}(\mu) a_{0}^{\| \|^{1} P_{1}}(\mu)
\end{aligned}
$$

LCDA $\Phi_{\|}^{1 P_{1}}$ can be recast to the form
(2) $\quad \Phi_{\|}^{{ }^{1} P_{1}}(u)=f_{1} 6 u \bar{u}\left\{1+\mu_{1 P_{1}} \sum_{i=1}^{2} a_{i}^{\| \|{ }^{1} P_{1}} C_{i}^{3 / 2}(2 u-1)\right\} \quad$ with $\quad \mu_{1 P_{1}}=1 / a_{0}^{\|,{ }^{1} P_{1}}$.

- For neutral $b_{1}, f_{b 1}=0$, but $f_{b 1} \mu_{b 1}=f_{b 1} \perp$ is finite!
- This is very similar to the scalar meson case where $f\left[f_{0}, a_{0}{ }^{\circ}, \sigma\right]=0$, but decay constant defined by $\langle S| q_{1} q_{2}|0\rangle=m_{s} \bar{f}_{s}$ is not vanishing. LCDA (1) and (2) are equivalent for describing $\Phi_{\|}$for ${ }^{1} P_{1}$ meson

Due to odd G-parity, $\Phi_{\perp}, h_{\|}{ }^{(t)}, h_{\|}{ }^{(p)}$ are anti-symmetric under $\mathbf{u} \rightarrow 1-\mathrm{u}$, while $\Phi_{\|}, \mathbf{g}_{\perp}{ }^{(\mathrm{v})}, \mathbf{g}_{\perp}^{(\mathrm{a})}$ are symmetric with the replacement $\mathbf{u} \rightarrow \mathbf{1}-\mathrm{u}$ in $\mathrm{SU}(3)$ limit

$$
\begin{align*}
& \Phi_{\|}^{3 P_{1}}(u)=f_{3 P_{1}} 6 u \bar{u}\left\{1+3 a_{1}^{\|,{ }^{3} P_{1}}(2 u-1)+a_{2}^{\|,{ }^{3} P_{1}} \frac{3}{2}\left[5(2 u-1)^{2}-1\right]\right\}, \\
& \Phi_{\perp}^{3 P_{1}}(u)=f_{3}{ }_{3} 6 u \bar{u}\left\{a_{0}^{\perp,{ }^{3} P_{1}}+3 a_{1}^{\perp,{ }^{3} P_{1}}(2 u-1)+a_{2}^{\perp,}{ }^{3} P_{1} \frac{3}{2}\left[5(2 u-1)^{2}-1\right]\right\} \tag{1}\\
& \int_{0}^{1} d u \Phi_{\|}^{3 P_{1}}(u)=f_{3} P_{1}, \quad \int_{0}^{1} d u \Phi_{\perp}^{3} P_{1}(u)=f_{3}^{\perp}{ }_{3} P_{1} \quad \Rightarrow \quad f_{3}^{\perp}(\mu)=f_{3 P_{1}} a_{0}^{\perp,{ }^{3} P_{1}}(\mu) .
\end{align*}
$$

LCDA $\Phi_{\perp}^{3 P_{1}}$ can be recast to the form
(2) $\quad \Phi_{\perp}^{{ }^{3} P_{1}}(u)=f_{3_{P_{1}}}^{\perp} 6 u \bar{u}\left\{1+\mu_{3} P_{1} \sum_{i=1}^{2} a_{i}^{\perp,{ }^{3} P_{1}} C_{i}^{3 / 2}(2 u-1)\right\} \quad$ with $\quad \mu_{3} P_{P_{1}}=1 / a_{0}^{\perp},{ }^{3} P_{1}$

One can use LCDA (1) or (2) to describe Φ_{\perp} for ${ }^{3} \mathbf{P}_{1}$ meson

Gegenbauer moments

K.C. Yang, Nucl. Phys. B776, 187 (2007)

| μ | $a_{2}^{\\|, a_{1}(1260)}$ | $a_{2}^{\\|, f_{1}{ }^{3} P_{1}}$ | $a_{2}^{\\|, f_{8}{ }^{3} P_{1}}$ | $a_{2}^{\\|, K_{1 A}}$ | $a_{1}^{\\|, K_{1 A}}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 GeV | -0.02 ± 0.02 | -0.04 ± 0.03 | -0.07 ± 0.04 | -0.05 ± 0.03 | $-0.30_{-0.00}^{+0.26}$ | |
| 2.2 GeV | -0.01 ± 0.01 | -0.03 ± 0.02 | -0.05 ± 0.03 | -0.04 ± 0.02 | $-0.24_{-0.00}^{+0.21}$ | |
| μ | $a_{1}^{\perp, a_{1}(1260)}$ | $a_{1}^{\perp, f_{1}^{3} P_{1}}$ | $a_{1}^{\perp, f_{8}^{3} P_{1}}$ | $a_{1}^{\perp, K_{1 A}}$ | $a_{0}^{\perp, K_{1 A}}$ | $a_{2}^{\perp, K_{1 A}}$ |
| 1 GeV | -1.04 ± 0.34 | -1.06 ± 0.36 | -1.11 ± 0.31 | -1.08 ± 0.48 | $0.26_{-0.22}^{+0.03}$ | 0.02 ± 0.21 |
| 2.2 GeV | -0.81 ± 0.26 | -0.82 ± 0.28 | -0.86 ± 0.24 | -0.84 ± 0.37 | $0.24_{-0.21}^{+0.03}$ | 0.01 ± 0.15 |
| μ | $a_{1}^{\\|, b_{1}(1235)}$ | $a_{1}^{\\|, h_{1}{ }^{1} P_{1}}$ | $a_{1}^{\\|, h_{8}{ }^{1} P_{1}}$ | $a_{1}^{\\|, K_{1 B}}$ | $a_{0}^{\\|, K_{1 B}}$ | $a_{2}^{\\|, K_{1 B}}$ |
| 1 GeV | -1.95 ± 0.35 | -2.00 ± 0.35 | -1.95 ± 0.35 | -1.95 ± 0.45 | -0.15 ± 0.15 | $0.09_{-0.18}^{+0.16}$ |
| 2.2 GeV | -1.56 ± 0.28 | -1.60 ± 0.28 | -1.56 ± 0.28 | -1.56 ± 0.36 | -0.15 ± 0.15 | $0.06_{-0.13}^{+0.11}$ |
| μ | $a_{2}^{\perp, b_{1}(1235)}$ | $a_{2}^{\perp, h_{1}{ }^{1} P_{1}}$ | $a_{2}^{\perp, h_{8}{ }^{1_{P}}}$ | $a_{2}^{\perp, K_{1 B}}$ | $a_{1}^{\perp, K_{1 B}}$ | |
| 1 GeV | 0.03 ± 0.19 | 0.18 ± 0.22 | 0.14 ± 0.22 | -0.02 ± 0.22 | $0.30_{-0.31}^{+0.00}$ | |
| 2.2 GeV | 0.02 ± 0.14 | 0.14 ± 0.17 | 0.11 ± 0.17 | -0.02 ± 0.17 | $0.25_{-0.26}^{+0.00}$ | |

$\mathrm{B} \rightarrow \mathrm{VV}$ in QCDF

HYC, K.C. Yang, 2001
Li, Lu, Y.D. Yang, 2003, 2005
Kagan, 2004 (penguin annihilation)
Zou, Xiao, 2005
Y.D. Yang, Wang, Lu, 2005

Das, K.C. Yang, 2005
Huang, Ko, Wu, Y.D. Yang, 2006
Beneke, Rohrer, D.S. Yang, 2007

Most of early results do not agree with each other due mainly to incorrect projection on polarization states (except Das \& Yang); all have errors (except Kagan) and none complete.

Beneke et al. obtained complete NLO corrections to $\mathrm{a}_{\mathrm{i}} \mathrm{h}$ \& computed LO weak annihilation.

$B \rightarrow V V, V A, A A$ in QCDF

Apply QCD factorization to $\mathrm{B} \rightarrow \mathrm{VV}, \mathrm{VA}, \mathrm{AA}$ (Beneke, Buchalla, Neubert, Sachrajda) vertex \& penguin

hard spectator int.

annihilation

(a)

(b)

(c)

(d)

$$
\begin{aligned}
& a_{i}^{p, h}\left(M_{1} M_{2}\right)=\left(c_{i}+\frac{c_{i \pm 1}}{N_{c}}\right) N_{i}^{h}\left(M_{2}\right) \\
&+\frac{c_{i \pm 1}}{N_{c}} \frac{C_{F} \alpha_{s}}{4 \pi}\left[V_{i}^{h}\left(M_{2}\right)-\frac{4 \pi^{2}}{N_{c}} H_{i}^{h}\left(M_{1} M_{2}\right)\right]+P_{i}^{h, p}\left(M_{2}\right) \\
& N_{i}\left(M_{2}\right)=\left\{\begin{array}{ll}
0, & i=6,8, \\
1, & \text { else. }
\end{array} \quad= \begin{cases}1 & \text { for }{ }^{3} P_{1} \\
a_{0}^{1,} P_{1} & \text { for }{ }^{1} P_{1}, \text { vanishes in } \mathrm{SU}(3) \text { limit }\end{cases} \right.
\end{aligned}
$$

$$
\begin{aligned}
& M_{\|}^{V}=-i \frac{f_{V}}{4} \frac{m_{V}\left(\epsilon_{(\lambda)}^{*} n_{+}\right)}{2} \not n_{-} \Phi_{\|}(u)-i \frac{f_{V}^{\perp} m_{V}}{4} \frac{m_{V}\left(\epsilon_{(\lambda)}^{*} n_{+}\right)}{2 E}\left\{-\frac{i}{2} \sigma_{\mu \nu} n_{-}^{\mu} n_{+}^{\nu} h_{\|}^{(t)}(u)\right. \\
& \left.-i E \int_{0}^{u} d v\left(\Phi_{\perp}(v)-h_{\|}^{(t)}(v)\right) \sigma_{\mu \nu} n_{-}^{\mu} \frac{\partial}{\partial k_{\perp \nu}}+\frac{h_{\|}^{\prime}(s)(u)}{2}\right\}\left.\right|_{k=u p}+\mathcal{O}\left[\left(\frac{m_{V}}{E}\right)^{2}\right], \\
& M_{\perp}^{V}=-i \frac{f_{V}^{\perp}}{4} E \not \notin \perp_{*(\lambda)}^{n_{-}} \Phi_{\perp}(u) \\
& -i \frac{f_{V} m_{V}}{4}\left\{\mathscr{ধ}_{\perp}^{*(\lambda)} g_{\perp}^{(v)}(u)-E \int_{0}^{u} d v\left(\Phi_{\|}(v)-g_{\perp}^{(v)}(v)\right) \not \dot{n}_{-} \epsilon_{\perp \mu}^{*(\lambda)} \frac{\partial}{\partial k_{\perp \mu}}\right. \\
& \left.+i \varepsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \epsilon_{\perp}^{*(\lambda) \nu} n_{-}^{\rho} \gamma_{5}\left[n_{+}^{\sigma} \frac{g_{\perp}^{\prime(a)}(u)}{8}-E \frac{g_{\perp}^{(a)}(u)}{4} \frac{\partial}{\partial k_{\perp \sigma}}\right]\right\}\left.\right|_{k=u p}+\mathcal{O}\left[\left(\frac{m_{V}}{E}\right)^{2}\right], \\
& M_{\|}^{A}=-i \frac{f_{A}}{4} \frac{m_{A}\left(\epsilon_{(\lambda)}^{*} n_{+}\right)}{2} \not n_{-} \gamma_{5} \Phi_{\|}(u)+i \frac{f_{A}^{\perp} m_{A}}{4} \frac{m_{A}\left(\epsilon_{(\lambda)}^{*} n_{+}\right)}{2 E}\left\{-\frac{i}{2} \sigma_{\mu \nu} \gamma_{5} n_{-}^{\mu} n_{+}^{\nu} h_{\|}^{(t)}(u)\right. \\
& \left.-i E \int_{0}^{u} d v\left(\Phi_{\perp}(v)-h_{\|}^{(t)}(v)\right) \sigma_{\mu \nu} \gamma_{5} n_{-}^{\mu} \frac{\partial}{\partial k_{\perp \nu}}+\gamma_{5} \frac{h_{\|}^{(p)}(u)}{2}\right\}\left.\right|_{k=u n}+\mathcal{O}\left[\left(\frac{m_{A}}{E}\right)^{2}\right] \\
& M_{\perp}^{A}=i \frac{f_{A}^{\perp}}{4} E ধ_{\perp}^{*(\lambda)} \not n_{-} \gamma_{5} \Phi_{\perp}(u) \\
& -i \frac{f_{A} m_{A}}{4}\left\{\Phi_{\perp}^{*(\lambda)} \gamma_{5} g_{\perp}^{(a)}(u)-E \int_{0}^{u} d v\left(\Phi_{\| \mid}(v)-g_{\perp}^{(a)}(v)\right) \not n_{-} \gamma_{5} \epsilon_{\perp \mu}^{*(\lambda)} \frac{\partial}{\partial k_{\perp \mu}}\right. \\
& \left.+i \varepsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \epsilon_{\perp}^{*(\lambda) \nu} n_{-}^{\rho}\left[n_{+}^{\sigma} \frac{g_{\perp}^{\prime(v)}(u)}{8}-E \frac{g_{\perp}^{(v)}(u)}{4} \frac{\partial}{\partial k_{\perp \sigma}}\right]\right\}\left.\right|_{k=u p}+\mathcal{O}\left[\left(\frac{m_{A}}{E}\right)^{2}\right]
\end{aligned}
$$

Transverse momentum derivative terms should be included before taking collinear approximation

■ Factorization breaks down for transverse polarization amplitudes even at leading power

```
[HYC, Yang, ...; Beneke et al.]
```

Hard spectator scattering:
$\mathrm{H}^{-} 1,5$ have \log div., $\mathrm{H}^{+}{ }_{1}$ has \log and linear div

$$
\int_{0}^{1} \frac{d x}{x} \equiv X \rightarrow \ln \left(\frac{m_{B}}{\Lambda_{h}}\right)\left(1+\rho e^{i \phi}\right)
$$

■ Nonfactorization \Rightarrow transverse polarization amplitudes are on much less solid footing than longitudinal ones

$B \rightarrow K^{*} \phi$

$$
\begin{aligned}
& \mathcal{A}_{B \rightarrow \bar{K}^{*} \phi}^{h} \approx V_{c}\left(\alpha_{3}^{h}+\alpha_{4}^{c, h}+\beta_{3}^{h}-\frac{1}{2} \alpha_{3, \mathrm{EW}}^{h}\right) X_{\bar{K}^{*} \phi}^{h} . \\
& \alpha_{3}=a_{3}+a_{5}, \quad \alpha_{4}=a_{4}-r_{\chi}{ }^{\phi} \mathbf{a}_{6}, \quad \alpha_{3, \mathrm{EW}}=a_{9}+a_{7}, \beta_{3}=\text { penguin ann } \\
& X_{\bar{K}^{*} \phi}^{h}=\langle\phi| J_{\mu}|0\rangle\left\langle\bar{K}^{*}\right| J^{\mu}|B\rangle, \quad\left|X_{\bar{K}^{*} \phi}^{0}\right|:\left|X_{\bar{K}^{*} \phi}^{-}\right|:\left|X_{\bar{K}^{*} \phi}^{+}\right|=1: 0.35: 0.007
\end{aligned}
$$

Coefficients are helicity dependent!

$$
\left.\frac{\mathcal{A}^{-}}{\mathcal{A}^{0}}\right|_{\bar{B} \rightarrow \bar{K}^{*} \phi} \approx\left(\frac{\alpha_{3}^{-}+\alpha_{4}^{c,-}-\frac{1}{2} \alpha_{3, \mathrm{EW}}^{-}}{\alpha_{3}^{0}+\alpha_{4}^{c, 0}-\frac{1}{2} \alpha_{3, \mathrm{EW}}^{0}}\right)\left(\frac{X_{\bar{K}^{*} \phi}^{-}}{X_{\bar{K}^{*} \phi}^{0}}\right) \quad \text { with } \beta_{3}=0
$$

constructive (destructive) interference in $A^{-}\left(A^{0}\right) \Rightarrow f_{L} \approx 0.58$
Any serious model for solving polarization enigma should consider NLO corrections

Although f_{L} is reduced to 60% level, polarization puzzle is not resolved as the predicted rate, $\mathrm{BR} \sim 4.3 \times 10^{-6}$, is too small compared to the data, $\sim 10 \times 10^{-6}$ for $\mathrm{B} \rightarrow \mathrm{K}^{*} \phi$

$$
P^{c}=\left[a_{4}^{c}+r_{\chi} a_{6}^{c}\right]_{S D}+[\underbrace{\left.a_{4}^{c}+r_{\chi} a_{6}^{c}\right]_{L D}}_{\text {charming penguin, FSI }}+\underbrace{\beta_{3}^{c}}_{\text {penguin annihilation }}+\ldots
$$

$\square \operatorname{Br} \& \mathrm{f}_{\mathrm{L}}$ are fit by adjusting $\quad X_{A}=\ln \left(\frac{m_{B}}{\Lambda_{h}}\right)\left(1+\rho_{A} e^{i \phi_{A}}\right)$
Kagan ('04)
$\Rightarrow \rho_{A}=0.60, \phi_{A}=-50^{\circ}$

Decay	\mathcal{B}		f_{L}		f_{\perp}	
	Theory	Expt	Theory	Expt	Theory	Expt
$\bar{B}^{-} \rightarrow K^{*-} \phi^{c}$	$10.0{ }_{-1.1}^{+1.3+6.3}$	10.0 ± 1.1	$0.499_{-0.38}^{+0.51}$	0.50 ± 0.05	$0.25_{-0.25}^{+0.20}$	0.20 ± 0.05
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \phi$	$9.5_{-1.1}^{+1.2+6.1}$	9.5 ± 0.8	$0.50_{-0.38}^{+0.50}$	0.484 ± 0.034	$0.25_{-0.25}^{+0.19}$	0.256 ± 0.032

$$
\mathrm{f}_{\|} \approx \mathrm{f}_{\perp} \sim 0.25
$$

We use $\rho_{\mathrm{A}} \& \phi_{\mathrm{A}}$ to accommodate the data of $\mathrm{Br} \& \mathrm{f}_{\mathrm{L}}$ rather than to predict them

■ Get large transverse polarization from $B \rightarrow D_{s}^{*} D^{*}$ and then convey it to ϕK^{*} via FSI (or charming penguin) [HYC, Chua, Soni; Colangelo, De Farzio, Pham]

$\mathrm{f}_{\mathrm{L}}\left(\mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{D}^{*}\right) \sim 0.51$
$\mathrm{f}_{| |} \sim 0.41, \mathrm{f}_{\perp} \sim 0.08$

contributes to f_{\perp} only

Large cancellation occurs in $B \rightarrow\left\{D_{s}^{*} D, D_{s} D^{*}\right\} \rightarrow \phi K^{*}$ processes. This can be understood as CP \& SU(3) symmetry

$\Rightarrow \quad$ very small perpendicular polarization, $f_{\perp} \sim 2 \%$, in sharp contrast to $f_{\perp} \sim 15 \%$ obtained by Colangelo et al.

While $f_{T} \approx 0.50$ is achieved, why is f_{\perp} not so small?

\bullet Cancellation in $\mathrm{B} \rightarrow\{\mathrm{VP}, \mathrm{PV}\} \rightarrow \phi \mathrm{K}^{*}$ can be circumvented in $B \rightarrow\{S A, A S\} \rightarrow \phi K^{*}$. For $S, A=D^{* *}, D_{s}^{* *} \Rightarrow f_{\perp} \sim 0.22$

- It is easy to explain the rate deficit $\& \mathrm{f}_{\mathrm{L}} \approx 0.50$ via FSI , but it takes some efforts to accommodate $\mathrm{f}_{\perp} \sim \mathrm{f}_{\|}$
- Ways of distinguishing penguin annihilation from recattering have been proposed by London et al. [arXiv:0802.0897]

$$
B \rightarrow K^{*} \rho
$$

Parameter	$h=0$	$h=-$	Parameter	$h=0$	$h=-$
$\alpha_{1}\left(\rho K^{*}\right)$	$0.96+0.02 i$	$1.11+0.03 i$	$\alpha_{3, \mathrm{EW}}\left(K^{*} \rho\right)$	$-0.009-0.000 i$	$0.005-0.000 i$
$\alpha_{2}\left(K^{*} \rho\right)$	$0.28-0.08 i$	$-0.17-0.17 i$	$\alpha_{4, \mathrm{EW}}\left(K^{*} \rho\right)$	$-0.002+0.001 i$	$0.001+0.001 i$
$\alpha_{4}^{u}\left(\rho K^{*}\right)$	$-0.022-0.014 i$	$-0.048-0.016 i$	$\beta_{3}\left(\rho K^{*}\right)$	$0.015-0.020 i$	$-0.012+0.016 i$
$\alpha_{4}^{c}\left(\rho K^{*}\right)$	$-0.026-0.014 i$	$-0.050-0.006 i$			

$\left.\frac{\mathcal{A}^{-}}{\mathcal{A}^{0}}\right\|_{\bar{B}^{0} \rightarrow \bar{K}^{*} \rho^{0}}$	$\approx\left(\frac{\alpha_{4}^{c,-}-\frac{3}{2} \alpha_{3, \mathrm{EW}}^{-}}{\alpha_{4}^{c, 0}-\frac{3}{2} \alpha_{3, \mathrm{EW}}^{0}}\right)$	$\left(\frac{X_{\bar{K}^{*} \rho}^{-}}{X_{\bar{K}^{*} \rho}^{0}}\right)$	$\frac{\text { constructive }}{\text { destructive }}$
$\left.\frac{\mathcal{A}^{-}}{\mathcal{A}^{0}}\right\|_{B^{-} \rightarrow K^{*-}-\rho^{0}}$	$\approx\left(\frac{\alpha_{4}^{c,-}+\frac{3}{2} \alpha_{3, \mathrm{EW}}^{-}}{\alpha_{4}^{c, 0}+\frac{3}{2} \alpha_{3, \mathrm{EW}}^{0}}\right)$	$\left(\frac{X_{\overline{\bar{K}^{*}}}^{-}}{X_{\bar{K}^{*} \rho}^{0}}\right)$	$\frac{\text { destructive }}{\text { constructive }}$

$\Rightarrow f_{L}\left(K^{*} \rho^{0}\right)=0.96, \quad f_{L}\left(K^{*} \rho^{0}\right)=0.47 \quad\left(=0.91\right.$ if $\mathrm{a}_{\mathrm{i}} \mathrm{h}$ are helicity indep)

Decay	Expt			(i)	
	\mathcal{B}	f_{L}		\mathcal{B}	f_{L}
$B^{-} \rightarrow \bar{K}^{* 0} \rho^{-}$	$\underline{9.2 \pm 1.5}$	0.48 ± 0.08		3.8	0.78
$B^{-} \rightarrow K^{*-} \rho^{0}$	<6.1	$0.96_{-0.16}^{+0.0}$		3.6	0.96
$\bar{B}^{0} \rightarrow K^{*-} \rho^{+}$	<12	-	3.6	0.84	
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \rho^{0}$	$\underline{5.6 \pm 1.6}$	0.57 ± 0.12	$\underline{1.1}$	0.47	

But, the predicted rates for $\mathrm{K}^{*} \rho^{0}$ \& $\mathrm{K}^{*} \rho^{0}$ are too small !

Choose $\mathrm{K}^{* 0} \rho^{-}$as an input, a fit to BR and f_{L} yields $\rho_{\mathrm{A}}=0.75, \phi_{\mathrm{A}}=-42^{\circ}$, slightly different from the ones $\rho_{\mathrm{A}}=0.60, \phi_{\mathrm{A}}=-50^{\circ}$ inferred from $\mathrm{B} \rightarrow \mathrm{K}^{*} \phi$

Decay	\mathcal{B}			f_{L}			f_{\perp}	
	Theory	Expt		Theory	Expt	Theory	Expt	
$B^{-} \rightarrow \bar{K}^{* 0} \rho^{-a}$	$9.3_{-1.1-5.6}^{+1.2+4.5}$	9.2 ± 1.5	$0.50_{-0.38}^{+0.50}$	0.48 ± 0.08		$0.25_{-0.25}^{+0.19}$		
$B^{-} \rightarrow K^{*-} \rho^{0}$	$5.4_{-0.5-2.4}^{+0.6+2.9}$	<6.1		$0.69_{-0.47}^{+0.29}$	$0.96_{-0.16}^{+0.06}$			$0.15_{-0.14}^{+0.23}$
$\bar{B}^{0} \rightarrow K^{*-} \rho^{+}$	$9.0_{-1.0-5.5}^{+1.1+4.8}$	<12		$0.55_{-0.31}^{+0.42}$			$0.22_{-0.21}^{+0.16}$	
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \rho^{0}$	$4.7_{-0.5-3.7}^{+0.6+4.0}$	5.6 ± 1.6	$0.43_{-0.29}^{+0.56}$	0.57 ± 0.12	$0.29_{-0.28}^{+0.15}$			

$\mathrm{K}^{*-} \rho^{0}$ was contaminated by $\mathrm{K}^{*} \mathrm{f}_{0}(980)$ in previous 2003 measurement of $\mathrm{f}_{\mathrm{L}}\left(\mathrm{K}^{*-} \rho^{0}\right)$. New BaBar measurement of $f_{L}=0.9 \pm 0.2$ has only 2.5 significance

$$
f_{L}\left(K^{*-} \rho^{0}\right)>f_{L}\left(K^{*-} \rho^{+}\right)>f_{L}\left(\bar{K}^{* 0} \rho^{-}\right)>f_{L}\left(\bar{K}^{* 0} \rho^{0}\right)
$$

Comparison with Beneke, Rohrer, Yang

- sign difference in annihilation terms $\mathrm{A}_{3} \mathrm{f}, 0 \quad \mathrm{~A}_{3} \mathrm{i}, 0$

$$
\begin{aligned}
& A_{3}^{f, 0}\left(V_{1} V_{2}\right) \approx-18 \pi \alpha_{s}\left(r_{\chi}^{V_{1}}-r_{\chi}^{V_{2}}\right)\left(X_{A}^{0}-2\right)\left(2 X_{A}^{0}-1\right) \\
& A_{3}^{i, 0}\left(V_{1} V_{2}\right) \approx 18 \pi \alpha_{s}\left(-r_{\chi}^{V_{1}}-r_{\chi}^{V_{2}}\right)\left(X_{A}^{0^{2}}-2 X_{A}^{0}+4-\frac{\pi^{2}}{3}\right) \quad r_{\chi}^{V}(\mu)=\frac{2 m_{V}}{m_{b}(\mu)} \frac{f_{V}^{\perp}(\mu)}{f_{V}}
\end{aligned}
$$

BRY got a negative sign for $r_{\chi} v$. Recall that annihilation in A_{0} is governed by $\mathrm{A}^{\mathrm{f}, \mathrm{O}_{3}}$ or $\beta_{3}{ }^{\mathrm{o}}$

- different c quark mass, $\mathrm{m}_{\mathrm{c}}\left(\mathrm{m}_{b}\right)=1.3 \pm 0.2 \mathrm{GeV}$ (we use 0.91 GeV)
- BRY use the same ρ_{A} \& ϕ_{A} parameters for $\mathrm{B} \rightarrow \mathrm{K}^{*} \rho$ \& $\mathrm{K}^{*} \phi$

Decay	Expt		BRY		new f_{L}
	\mathcal{B}	f_{L}	\mathcal{B}	f_{L}	
$B^{-} \rightarrow \bar{K}^{* 0} \rho^{-}$	$\underline{9.2 \pm 1.5}$	0.48 ± 0.08	$\underline{5.9}{ }^{+3.7}$	$0.56{ }_{-0.30}^{+0.48}$	$0.44_{-0.40}^{+0.59}$
$B^{-} \rightarrow K^{*-} \rho^{0}$	<6.1	$0.96{ }_{-0.16}^{+0.06}$	$\overline{4.5_{-1.9}^{+3.4}}$	(0.84 ${ }_{-0.25}^{+0.16}$	$0.61_{-0.44}^{+0.44}$
$\bar{B}^{0} \rightarrow K^{*-} \rho^{+}$	<12	这	$5.5{ }_{-3.3}^{+6.0}$	$0.611_{-0.29}^{+0.38}$	$0.41_{-0.20}^{+0.55}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \rho^{0}$	$\underline{5.6 \pm 1.6}$	0.57 ± 0.12	$2.4_{-2.0}^{+3.5}$	$0.22_{-0.14}^{+0.53}$	$0.33_{-0.18}^{+0.66}$

Kagan ('04)

In absence of penguin ann, $\mathrm{f}_{\mathrm{L}} \approx 0.90(\approx 0.67$ by $\mathrm{BRY}, \approx 0.58$ by us)
as Kagan didn't consider vertex and spectator corrections Have to reply heavily on penguin ann to bring up f_{T}

In our case, we use penguin ann mainly to accommodate rate deficit rather than to enhance f_{T}
pQCD (Li, Mishima)
$\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{K}^{*} \phi\right) \sim 15 \times 10^{-6}, \mathrm{f}_{\mathrm{L}} \sim 0.75 \quad\left(\mathrm{~A}_{0}=0.40\right.$ for $\mathrm{B} \rightarrow \mathrm{K}^{*}$ transition $)$

$$
\begin{aligned}
A_{L} & \propto 2 r_{2} \epsilon_{2}^{*}(L) \cdot \epsilon_{3}^{*}(L) A_{0}, \\
A_{\|} & \propto-\sqrt{2}\left(1+r_{2}\right) A_{1}, \\
A_{\perp} & \propto-\frac{2 r_{2} r_{3}}{1+r_{2}} \sqrt{2\left[\left(v_{2} \cdot v_{3}\right)^{2}-1\right]} V
\end{aligned}
$$

Li proposed to use $A_{0} \sim 0.28$ to get

$$
\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{~K}^{*} \phi\right) \sim 10 \times 10^{-6}, \quad \mathrm{f}_{\mathrm{L}} \sim 0.59
$$

$>$ too small A_{0} ? (many people use $A_{0} \sim 0.37$) not welcome for $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \underline{K}^{* 0}$ (see next)
$>$ NLO corrections need to be considered (in progress)

Other VV modes

Decay	\mathcal{B}		f_{L}		f_{\perp}	
	Theory	Expt	Theory	Expt	Theory	Expt
$\overline{B^{-} \rightarrow \rho^{-} \rho^{0}}$	$20.1_{-1.9}^{+4.0+2.0}$	18.2 ± 3.0	$0.96{ }_{-0.02}^{+0.02}$	$0.912_{-0.045}^{+0.044}$	0.02 ± 0.01	
$\bar{B}^{0} \rightarrow \rho^{+} \rho^{-}$	$25.3_{-2.6-1.5}^{+1.5+2.4}$	$24.2{ }_{-3.2}^{+3.1}$	$0.92_{-0.02}^{+0.01}$	$0.978_{-0.022}^{+0.025}$	$0.04_{-0.00}^{+0.01}$	
$\bar{B}^{0} \rightarrow \rho^{0} \rho^{0}$	$0.9_{-0.4-0.2}^{+1.5+1.1}$	0.68 ± 0.27	$0.92_{-0.36}^{+0.06}$	0.70 ± 0.15	$0.04_{-0.03}^{+0.14}$	
$B^{-} \rightarrow \rho^{-} \omega$	$19.1{ }_{-1.6-1.0}^{+3.3+1.7}$	$10.6{ }_{-2.3}^{+2.6}$	$0.96{ }_{-0.02}^{+0.02}$	0.82 ± 0.11	0.02 ± 0.01	
$\bar{B}^{0} \rightarrow \rho^{0} \omega$	$0.1_{-0.1}^{+0.1+0.4}$	<1.5	$0.55_{-0.29}^{+0.47}$		$0.22_{-0.23}^{+0.16}$	
$B^{-} \rightarrow K^{*-} \omega$	$3.5_{-0.4-1.8}^{+0.4+3.5}$	< 3.4	$0.677_{-0.36}^{+0.32}$		$0.16_{-0.16}^{+0.18}$	
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \omega$	$3.0_{-0.4-1.8}^{+0.5+3.4}$	<2.7	$0.57_{-0.41}^{+0.44}$		0.21 ± 0.22	
$B^{-} \rightarrow K^{* 0} K^{*-}$	$0.6_{-0.1-0.3}^{+0.1+0.3}$	<71	$0.48_{-0.38}^{+0.51}$		$0.26_{-0.26}^{+0.19}$	
$\bar{B}^{0} \rightarrow K^{*-} K^{*+}$	$0.1{ }_{-0}^{+0.0}+0.1$	<141	1		0	
$\bar{B}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$	$0.6_{-0.1}^{+0.1+0.3}$	$1.288_{-0.32}^{+0.37}$	$0.52_{-0.47}^{+0.48}$	$0.80_{-0.13}^{+0.12}$	$0.24_{-0.24}^{+0.23}$	

■ Longitudinal amplitude dominates tree-dominated decays except for $\rho^{0} \omega$
■ $B \rightarrow \omega$ form factors are slightly smaller than what expected from lightcone sum rules

$B \rightarrow V A \quad\left(A=a_{1}, b_{1}, K_{1}, f_{1}, h_{1}\right)$

$\square \Gamma\left(\mathrm{B}^{0} \rightarrow \mathrm{~b}_{1}{ }^{+} \rho^{-}\right) \gg \Gamma\left(\mathrm{B}^{0} \rightarrow \mathrm{~b}_{1}-\rho^{+}\right)$
\square BaBar: $\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \mathrm{a}_{1}{ }^{ \pm} \rho^{\mp}\right)<61 \times 10^{-6} ; \quad \mathrm{Br}\left(\mathrm{B}^{0} \rightarrow \mathrm{~b}_{1} \pm \rho^{\mp}\right)<1.7 \times 10^{-6} \quad$ (FPCP2008)
Naively, it is expected that $\mathrm{b}_{1}{ }^{+} \rho^{-} \sim 3 \mathrm{~b}_{1}{ }^{+} \pi^{-} \sim 30 \times 10^{-6}$
■ $a_{1} K^{*}$ modes are dominated by transverse amplitudes

$B \rightarrow A A$

Decay	$\theta_{K_{1}}=-37^{\circ}$		$\theta_{K_{1}}=-58^{\circ}$	
	\mathcal{B}	f_{L}	\mathcal{B}	f_{L}
$\bar{B}^{0} \rightarrow K_{1}^{-}(1270) a_{1}^{+}$	$32.0_{-20.5-30.5}^{+43.2+174.8}$	$0.21{ }_{-0.07}^{+0.18}$	$36.4_{-23.2}^{+46.8+33.5}$	$0.14_{-0.06}^{+0.31}$
$\bar{B}^{0} \rightarrow \bar{K}_{1}^{0}(1270) a_{1}^{0}$	$16.0_{-10.4-15.5}^{+22.0+85.9}$	$0.21_{-0.13}^{+0.71}$	$17.4_{-11.7}^{+23.7}+17.0$	$0.11_{-0.03}^{+0.27}$
$B^{-} \rightarrow \bar{K}_{1}^{0}(1270) a_{1}^{-}$	$33.4_{-21.5-32.2}^{+45.1+175.8}$	$0.19_{-0.16}^{+0.22}$	$38.1_{-24.1}^{+48.5+36.0}$	$0.13_{-0.13}^{+0.31}$
$B^{-} \rightarrow K_{1}^{-}(1270) a_{1}^{0}$	$18.8{ }_{-10.8}^{+22.4}{ }^{+89.6}$	$0.26_{-0.15}^{+0.41}$	$21.4_{-12.1-17.7}^{+24.2+91.3}$	$0.21_{-0.13}^{+0.44}$
$\bar{B}^{0} \rightarrow K_{1}^{-}(1400) a_{1}^{+}$	$10.11_{-4.8-6.7}^{+8.7+12.8}$	$0.31{ }_{-0.27}^{+0.33}$	$5.0_{-1.8}^{+4.5+20.6}$	$0.92_{-0.53}^{+0.04}$
$\bar{B}^{0} \rightarrow \bar{K}_{1}^{0}(1400) a_{1}^{0}$	$5.5_{-2.5-3.7}^{+4.4+7.7}$	$0.39_{-0.37}^{+0.51}$	$3.8{ }_{-1.4-2.9}^{+2.7+11.9}$	$0.96{ }_{-0.44}^{+0.15}$
$B^{-} \rightarrow \bar{K}_{1}^{0}(1400) a_{1}^{-}$	$11.4_{-5.2-8.5}^{+9.2+17.7}$	$0.37_{-0.37}^{+0.63}$	$5.9-2.2-5.0$	$0.95_{-0.54}^{+0.08}$
$B^{-} \rightarrow K_{1}^{-}(1400) a_{1}^{0}$	$5.1{ }_{-2.3}^{+4.3+9.9}$	$0.28{ }_{-0.24}^{+0.35}$	$2.1{ }_{-0.8}^{+2.2+9.5}$	$0.88{ }_{-0.72}^{+0.08}$
$\bar{B}^{0} \rightarrow K_{1}^{-}(1270) b_{1}^{+}$	$12.9{ }_{-5.8}^{+9.7}+66.5$	$0.37_{-0.18}^{+0.47}$	$11.8{ }_{-1}^{+10.7}{ }_{-8.3}$	$0.20_{-0.24}^{+0.65}$
$\bar{B}^{0} \rightarrow \bar{K}_{1}^{0}(1270) b_{1}^{0}$	$6.5{ }_{-2.8-5.7}^{+4.8+3.4}$	$0.37_{-0.30}^{+0.46}$	$6.0{ }_{-2.2-3.9}^{+5.1+36.0}$	$0.20_{-0.25}^{+0.65}$
$B^{-} \rightarrow \bar{K}_{1}^{0}(1270) b_{1}^{-}$	$13.5{ }_{-6.0-12.7}^{+10.4+73.2}$	$0.39_{-0.27}^{+0.39}$	$11.1_{-4.2-8.2}^{+10.2+73.5}$	$0.13_{-0.12}^{+0.62}$
$B^{-} \rightarrow K_{1}^{-}(1270) b_{1}^{0}$	$7.9_{-3.7-0.9}^{+6.5+36.6}$	$0.47_{-0.25}^{+0.41}$	$6.9_{-2.9-4.4}^{+6.5+34.3}$	$0.30_{-0.30}^{+0.57}$
$\bar{B}^{0} \rightarrow K_{1}^{-}(1400) b_{1}^{+}$	$20.2_{-8.8-18.1}^{+21.4+199.7}$	$0.911_{-0.31}^{+0.03}$	$21.7_{-10.1}^{+20.3+199.7}$	$0.98{ }_{-0.37}^{+0.02}$
$\bar{B}^{0} \rightarrow \bar{K}_{1}^{0}(1400) b_{1}^{0}$	$10.8_{-4.5-10.2}^{+10.6+106.9}$	$0.90_{-0.80}^{+0.06}$	$11.5_{-5.3-10.8}^{+10.4+104.5}$	$0.98{ }_{-0.71}^{+0.02}$
$B^{-} \rightarrow \bar{K}_{1}^{0}(1400) b_{1}^{-}$	$22.9{ }_{-9.7-21.7}^{+22.8+24.5}$	$0.90_{-0.82}^{+0.05}$	$25.7_{-12.0-24.5}^{+23.3+25.0}$	$0.98{ }_{-0.84}^{+0.02}$
$B^{-} \rightarrow K_{1}^{-}(1400) b_{1}^{0}$	$10.7_{-4.7-11.4}^{+11.4}{ }^{104.8}$	$0.91_{-0.33}^{+0.01}$	$12.0_{-5.7-11.2}^{+11.3+107.6}$	$0.988_{-0.50}^{+0.02}$

Penguin-dominated $\mathrm{K}_{1} \mathrm{~A}$ modes (except for $\mathrm{K}_{1} \mathrm{~b}_{1}$) have sizable transverse polarization; see arXiv:0805.0329 for details

Conclusions

■ NLO corrections to $a_{i} h$ can render A^{-}comparable to A^{0} in some VV modes and hence will bring up transverse polarization; no indication for new physics.

■ Decay rates should be produced correctly before making a sensible prediction for polarization fractions

■ Rate deficit puzzle is more serious than polarization one

