Non-MFV and Non-SUSY models

Yasuhiro Okada (KEK/Sokendai)

June 11, 2008, CERN

"Flavour as a Window to New Physics at the LHC"

Flavor in the LHC era

- LHC will give a first look at the TeV scale physics.
 - The mass of the Higgs boson alone is an important hint for possible new physics scenarios.
- Flavor structure of the TeV scale physics is largely unknown.
 - Patterns of the deviations from the SM predictions are a key to distinguish new physics models.
- New flavor experiments are coming. LHCb, B physics at ATLAS and CMS, MEG, Super B, etc.

SM has a characteristic feature among various flavor and CP signals.

Relationship may be quite different for new physics contributions.

CKM looks perfect

Even if CKM looks perfect, there are still room for new physics contributions of at least a few 10's %.

SM global fit

Fit by tree level processes

Minimal Flavor Violation

D.G'Ambrosio, G.F.Giudice, G.Isidori, A.Strumia, 2002

New physics contributions to flavor changing amplitudes are essentially governed by the CKM matrix.

$$M_{ij}(New) \sim (V_{3i}^*V_{3j})X(m_{new})$$

LHC, new particle Flavor physics amplitudes

There are definite relations among different flavor transitions, for instance, Bd, Bs, K flavor signals.

New physics studies for Super B factory.

 There are series of studies to clarify the physics potential of a super B factory, including B, D and tau physics.

```
Super KEKB study (2001-)
SLAC Super B WS (2003)
CERN WS on Flavour in the era of the LHC (2005-2007)
SuperB CDR (2007)
```

 Various new physics models are taken to compare patterns of new physics signals.

Super B, experimental prospects

50-75 ab⁻¹

CKM parameters ----

b-s transition ———

B-> (D) τν _____

EW penguin ——

tau LFV _____

Observable	Super Flavour Factory sensitivity
$\sin(2\beta) \left(J/\psi K^0\right)$	0.005-0.012
$\gamma \left(B ightarrow D^{(*)} K^{(*)} ight)$	1–2°
$\alpha \ (B \to \pi\pi, \rho\rho, \rho\pi)$	1–2°
$ V_{ub} $ (exclusive)	3–5%
$ V_{ub} $ (inclusive)	2-6%
$\bar{\rho}$	1.7–3.4%
$ar{\eta}$	0.7 – 1.7%
$S(\phi K^0)$	0.02-0.03
$S(\eta' K^0)$	0.01-0.02
$S(K_{S}^{0}K_{S}^{0}K_{S}^{0})$	0.02-0.04
ϕ_D	1–3°
$\mathcal{B}(B o au u)$	3–4%
$\mathcal{B}(B o \mu u)$	5–6%
$\mathcal{B}(B o D au u)$	2–2.5%
$\mathcal{B}(B \to \rho \gamma)/\mathcal{B}(B \to K^* \gamma)$	3–4%
$A_{CP}(b \rightarrow s \gamma)$	0.004-0.005
$A_{CP}(b \rightarrow (s+d)\gamma)$	0.01
$S(K_S^0\pi^0\gamma)$	0.02-0.03
$S(\rho^0\gamma)$	0.08-0.12
$A^{\mathrm{FB}}(B \to X_s \ell^+ \ell^-) s_0$	4–6%
${\cal B}(B o K uar u)$	16–20%
$\mathcal{B}(au o\mu\gamma)$	$2-8 \times 10^{-9}$
$\mathcal{B}(au o\mu\mu\mu)$	$0.2 1 \times 10^{-9}$
$\mathcal{B}(au o\mu\eta)$	$0.4 - 4 \times 10^{-9}$

0(10%) physics (Now) => 0(1%) physics (Future)

Conclusions

LHCb is a heavy flavour precision experiment searching for New Physics in CP Violation and Rare Decays

A program to do this has been developed and the methods, including calibrations and systematic studies, are being worked out...

CP Violation: 2 fb-1 (1 year)*

- γ from trees: 5° 10°
- γ from penguins: ≈10°
- B_s mixing phase: 0.023
- β_s eff from penguins: 0.11

Rare Decays: 2 fb-1 (1 year)*

- Bs \rightarrow K* $\mu\mu$ s₀: 0.5 GeV²
- $B \rightarrow s \gamma A_{dir}$, A_{mix} : 0.11
 - A_{Λ} : 0.22
- B_s \rightarrow μμ BR.: 6 x 10⁻⁹ at 5σ

We appreciate the collaboration with the theory community to continue developing new strategies.

We are excitingly looking forward to the data from the LHC.

^{*} Expect uncertainty to scale statistically to 10 fb-1. Beyond: see Jim Libby's talk on Upgrade 40

Examples of New Physics Models and flavor signals

2003 SLAC WS Proceedings, hep-ph/0503261

	Model	B_d Unitarity	Time-dep. CPV	Rare B decay	Other signals	
SUSY	mSUGRA(moderate $\tan \beta$)	-	-	-	-	MFV
	mSUGRA(large $\tan \beta$)	B_d mixing	-	$B \rightarrow (D) \tau \nu$	$B_s o \mu \mu$	
				$b o s \ell^+ \ell^-$	B_s mixing	MFV
	SUSY GUT with ν_R	-	$B o \phi K_S$	-	B_s mixing	
			$B o K^* \gamma$		au LFV, n EDM	
	Effective SUSY	B_d mixing	$B o \phi K_S$	$A_{CP}^{b \to s \gamma}, b \to s \ell^+ \ell^-$	B_s mixing	
	KK graviton exchange	-	-	$b o s \ell^+ \ell^-$	-	
Extra	Split fermions	B_d mixing	-	$b \rightarrow s \ell^+ \ell^-$	$K^0\overline{K^0}$ mixing	
	in large extra dimensions				$D^0\overline{D}^0$ mixing	
Dimensior models	Bulk fermions	B_d mixing	$B o \phi K_S$	$b \rightarrow s \ell^+ \ell^-$	B_s mixing	
models	in warped extra dimensions				$D^0\overline{D}^0$ mixing	
	Universal extra dimensioins	-	-	$b o s \ell^+ \ell^-$	$K o\pi u\overline{ u}$	MFV
				$b o s\gamma$		IVIT V

Different pattern of the deviations from the SM prediction.

New physics examples

SUSY GUT with right-handed neutrinos

(Recent update, T.Goto, Y.O., T.Shindou, M.Tanaka, arXiv:0711.2935)

- Little Higgs Model with T-parity
- Models with extra-dimensions.

[1] SUSY GUT with right-handed neutrinos

Yukawa interactions at the GUT scales induce quark and lepton flavor signals. In the SU(5) setup, the right-handed sdown sector can receive flavor mixing due to the neutrino Yukawa couplings.

L.J.Hall, V.Kostelecky, S.Raby, 1986; A.Masiero, F.Borzumati, 1986, R.Barbieri, L.Hall, 1994, R.Barbieri, L.Hall. A.Strumia, 1995, S.Baek, T.Goto, Y.O, K.Okumura, 2001; T.Moroi, 2000; A.Masiero, M.Piai, A.Romanino, L.Silvestrini, 2001 D.Chang, A.Masiero, H.Murayama, 2003 J.Hisano, and Y.Shimizu, 2003, M.Ciuchini, et.al, 2004, 2007...

Effects of the neutrino Yukawa coupling

$$\mathcal{W}_{\text{MSSM}\nu_R} = \mathcal{W}_{\text{MSSM}} + (y_N)^{ij} \bar{N}_i L_j H_2 + \frac{1}{2} (M_N)^{ij} \bar{N}_i \bar{N}_j,$$

Neutrino mass matrix (in the basis where y₁ is diagonal).

$$(m_{\nu})_{ij} = (y_N^T \frac{1}{M_N} y_N)_{ij} < H_2 >^2$$

LFV mass terms for slepton (and sdown).

$$(m_L^2)_{ij} \sim -(y_N^{\dagger} y_N)_{ij} \frac{m_0^2 (3+|A_0|^2)}{8\pi^2} ln(\frac{M_p}{M_R})$$

LFV mass terms and V_{PMNS}is directly related when

$$(M_N)_{ij} \propto \delta_{ij}$$
 and y_N : real. (Minimal LFV)

In the case of Degenerate M_N and "Normal hierarchy" for light neutrinos :

 $B(\mu -> e\gamma)$ can be close to the present bound even if the slepton mass is 3 TeV.

 μ ->e γ , τ -> $\mu\gamma$, τ ->e γ branching ratios

T.Goto, Y.O., T.Shindou, M.Tanaka, 2007

Contour in the m_0 - $M_{1/2}$ plane

If $(y_N^{\dagger}y_N)_{12}$ is somewhat suppressed, the B(μ ->e γ) constraint becomes weaker, and a variety of flavor signals are possible.

Non-degenerate M_N

$$y_N \sim \begin{pmatrix} y_{11} & 0 & 0 \\ 0 & y_{22} & y_{23} \\ 0 & y_{32} & y_{33} \end{pmatrix} \quad (M_N)_{ij} \propto \delta_{ij}$$

J.Casas, A.Ibarra2001; J.Ellis, J.Hisano, M.Raidal, Y.Shimizu, 2002

• Degenerate M_N , but inverse hierarchy or degenerate light neutrino with θ_{13} ~0.

$$(y_N^{\dagger} y_N)_{12} = \frac{\hat{M}_N}{\langle h_2 \rangle^2} c_{\odot} s_{\odot} c_{\text{atm}} \frac{m_{\nu_2}^2 - m_{\nu_1}^2}{m_{\nu_2} + m_{\nu_1}}$$

$$V_{\rm PMNS} = \begin{pmatrix} c_{\odot}c_{13} & s_{\odot}c_{13} & s_{13} \\ -s_{\odot}c_{\rm atm} - c_{\odot}s_{\rm atm}s_{13} & c_{\odot}c_{\rm atm} - s_{\odot}s_{\rm atm}s_{13} & s_{\rm atm}c_{13} \\ s_{\odot}s_{\rm atm} - c_{\odot}c_{\rm atm}s_{13} & -c_{\odot}s_{\rm atm} - s_{\odot}c_{\rm atm}s_{13} & c_{\rm atm}c_{13} \end{pmatrix}$$

Lepton Flavor Violation

$$\tau$$
-> μ γ, τ -> e γ VS. μ -> e γ

T.Goto, Y.O., T.Shindou, M.Tanaka, 2007

Time-dependent CP asymmetry in Bd->K*γ

Time-dependent CP asymmetry in Bs->J/ψφ

These asymmetries can be sizable if the squarks are within the LHC reach.

Summary table of flavor signals for mSUGRA, SUSY seesaw, SUSY GUT, MSSA with U(2) flavor symmetry $\sqrt{\text{large deviation}}$ LFV

possible deviation

Model	$A_{CP}(s \gamma) S_{CP}(K$	$^*\gamma)A_{CP}(d\gamma)S_{CP}($	$(\rho\gamma)\Delta S_{CP}$	$(\phi K_S)S_{CP}(B_s$	$\rightarrow J/\psi\phi)\Delta m_{B_s}/$	Δm_{B_d} vs. $\phi_3 \mu \rightarrow$	$e\gamma \tau \rightarrow \mu \gamma$	$\tau \rightarrow e \gamma$
mSUGRA								
MSSM + RN								
Degenerate ν_R , NH						J		
Degenerate ν_R , IH						V	√	
Degenerate ν_R , D						J	V	
Nondegenerate ν_R (I), NH						·	V	
Nondegenerate ν_R (II), NH								√
SU(5) + RN								•
Degenerate ν_R , NH	•	•	•	•		√		
Degenerate ν_R , IH	√	•	✓	√	•	J	✓	
Degenerate ν_R , D	•	•	•	•		j	V	
Nondegenerate ν_R (I), NH	✓		✓	✓	•	ý	V	
Nondegenerate ν_R (II), NH	•	✓			•	j		J
U(2)FS	√ √	√	√	✓	•		_	

Large LFV signals=> possible slepton mixing signals at LHC

$$\chi_2^0 \to \chi_1^0 + l + l'$$

K.Aagshe, M.Graesser, 2000; I.Hinchliffe, F.E.Paige, 2001;

J.Hisano, R.Kitano, M.M.Nojiri, 2002,

D.F.Carvallo, J.Ellis, M.E.Gomez, S.Lola, J.C.Romao, 2005

J.Feng, C.G.Lester, Y.Nir, Y.Shadmi, 2007 ...

[2] Little Higgs model with T parity

- An effective theory describing the electroweak symmetry breaking where the Higgs boson is a pseudo Nambu-Goldstone boson below the cutoff scale ($\sim 4\pi f \sim 10 \text{TeV}$).
- The quadratic divergence of the Higgs boson mass renormalization is absent at one loop by "collective symmetry breaking". N.Arkani-Hamed, A.G.Cohen, E.Katz, and A.E.Nelson, 2002
- New gauge bosons, top-partners, extra scalar fields are introduced (masses ~ O(f)).
- In order to satisfy the electroweak precision constraints, new particle mass should be multi-TeV, reintroducing the little hierarchy problem.
- The new particle can be below 1 TeV, if the little Higgs model is extended to have T-parity. C.H.Cheng and I.Low,2003

The littlest Higgs model with T parity

SU(5)/S0(5) non-linear sigma model

$$[SU(2) imes U(1)]^2 o SU(2)_L imes U(1)_Y$$
 at f

$$SU(2)_L imes U(1)_Y
ightarrow U(1)_{em}$$
 at v=246 GeV

At ~10 TeV, UV completion theory

At $f \sim O(1)$ TeV

T-odd bosons: W_H , Z_H , ϕ_{ii} ,

T-odd fermions: u_{H.}d_H,I_H

Top partners T₊, T₋

Less than ~200 GeV T-odd heavy photon A_H SM particles

New particle production at LHC

New particles (except for T+) are pair-produced.

T-parity is likely to be violated by anomaly. (C.Hill and R.Hill,2007)

T-odd particles decay to A_H , and A_H decays to WW or ZZ through the WZW term.

Flavor Physics in the Little Higgs model with T-parity

J.Hubisz,S.J.Lee,G.Paz, 2005

New flavor mixing from T-odd quark and lepton sectors.

Out of three mixing matrixes, two are independent.

$$V_{Hu}^{\dagger}V_{Hd} = V_{CKM}$$

Similarly, in the lepton sector,

$$V_{H\nu}^{\dagger}V_{Hl} = V_{PMNS}^{\dagger}$$

These matrixes can induce a large contributions to FCNC and LFV processes. (Non-MFV in general)

Examples of flavor signals in Little Higgs model with T -parity

M.Blanke, A.Buras. S. Recksiegel, C. Tarantino, 2008

Lepton flavor violation

ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\frac{Br(\mu^- \to e^- e^+ e^-)}{Br(\mu \to e\gamma)}$	0.42.5	$\sim 6 \cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$
$\frac{Br(\tau^- \to e^- e^+ e^-)}{Br(\tau \to e\gamma)}$	0.42.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^-\!\!\to\!\!\mu^-\mu^+\mu^-)}{Br(\tau\!\to\!\mu\gamma)}$	0.42.3	$\sim 2 \cdot 10^{-3}$	0.060.1
$\frac{Br(\tau^- \to e^- \mu^+ \mu^-)}{Br(\tau \to e\gamma)}$	0.31.6	$\sim 2 \cdot 10^{-3}$	0.020.04
$\frac{Br(\tau^- \to \mu^- e^+ e^-)}{Br(\tau \to \mu \gamma)}$	0.31.6	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^- \rightarrow e^- e^+ e^-)}{Br(\tau^- \rightarrow e^- \mu^+ \mu^-)}$	1.3 1.7	~ 5	0.30.5
$\frac{Br(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{Br(\tau^- \rightarrow \mu^- e^+ e^-)}$	1.21.6	~ 0.2	510
$\frac{R(\mu \text{Ti} \rightarrow e \text{Ti})}{Br(\mu \rightarrow e \gamma)}$	$10^{-2} \dots 10^2$	$\sim 5\cdot 10^{-3}$	0.080.15

Clear distinction from the MSSM case.

M.Blanke, A.Buras, B.Duling. A.Poschenreider, C.Yarantino, 2007

Possible flavor connection to LHC physics

Heavy T-odd quark decays with and without b and t provide information on the new mixing matrix, which determine FCNC processes.

[3] Models with extra dim.

- Models with extra dimensions were proposed as an alternative scenario for a solution to the hierarchy problem.
- Various types of models:
 Flat extra dim vs. Curved extra dim.
 Various particles are allowed to propagate in the bulk.
- Geometrical construction of the fermion mass hierarchy
 non-universality of KK graviton/gauge boson couplings

Split fermions in the flat extra dim.

Formion mass biorarchy, in the warped extra dim.

Fermion mass hierarchy in the warped extra dim.

LHC reach on extra-dim models

26

KK graviton exchange

T.Rizzo in SLAC WS Proc.

KK graviton exchange can induce tree-level FCNC coupling.

$$O_{grav} = \frac{X}{M^4} T_{\mu\nu} T^{\mu\nu}$$

Differential branching ratio of b->sll processes

m_{KK1}=600 GeV

3rd Legendre polynomial moment

=> pick up $(\cos\theta)^3$ terms due to spin2 graviton exchange

 $< P_3(s) > = \frac{\int \frac{d^2\Gamma}{dsdz} P_3(z) dz}{\frac{d\Gamma}{ds}}$

Flat Extra Dim

0.05 -0.05 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 q^2/m_b^2

Warped extra dim

SM particle propagations in warped extra dim.

In the warped extra dimension with bulk fermion/gauge boson propagation

In order for the fermion mass hierarchy, we put

Light fermion -> localized toward Planck brane Top and left-handed bottom -> localized toward the TeV brane.

⇒Generate tree level FCNC in KK gluon and Z boson exchange.

Various interesting signals.

B-B mixing, b-> sII, K-> $\pi\nu\nu$, t->cZ, LFV processes

Flavor changing processes are closely related to physics of fermion mass generation

=> A.Soni's talk

Summary

- There are many possibilities in the TeV scale physics, and it may contain new sources of flavor. Role of flavor physics depends on a correct physics scenario.
- Flavor structure of new physics is unknown. We need to combine information from quark and lepton flavor experiments and flavor-dependent decay signals of high-Q2 physics. There are examples in SUSY, Little Higgs models as well as extra-dim models