Interplay of Flavor Physic And High Q^2 Physics: Tools & Benchmarks

Sven Heinemeyer, IFCA (Santander)

CERN, 06/2008

- 1. Introduction
- 2. Tools
- 3. Benchmarks
- 4. SuperB activities
- 5. Conclusions

1. Introduction

Workshop (2006/2007):

"Flavour in the Era of the LHC"

working groups:

- 1.) Collider aspects of flavour physics at high Q^2
- 2.) B, D and K decays
- 3.) Flavour physics of lepton and dipole moments
- → working groups 1 and 2 had dedicated tools subgroups

Topics of tools subgroup of working group 2:

- get an overview about existing tools
- develop ideas for integration of different tools
- facilitate the interplay of high Q^2 and low-energy B-physics

— . . .

Continuation:

Working Group on the Interplay Between Collider and Flavour Physics

⇒ dedicated "Working group" on Tools

Contact persons:

Uli Haisch

Frederic Ronga

SH

Continuation:

Working Group on the Interplay Between Collider and Flavour Physics

⇒ dedicated "Working group" on Tools

Main topics:

- continue to collect tools
- continue to integrate B-physics and low/high energy codes
- explore model independent approaches (see Uli's talk later)

– . . .

Status?

						\sim			
\bigcirc n	tha	importance	of the	intorplay	\sim f	high $O2$	and	LOW OBORON	D physics:
CHI	ше	mnoortance	or the	muerbiav	$\mathbf{O}\mathbf{I}$	THUH (J-	anu	TOW-EHEIGV	D-DHVSICS.
•	0		0. 00		•	9 4	O. O .		2 1011,701,001

Q: How to determine the Lagrangian that describes the world?

On the importance of the interplay of high Q^2 and low-energy B-physics:

Q: How to determine the Lagrangian that describes the world?

A: Measure as much as possible

- 1. Direct discoveries/measurements (masses, mixing angles, ...)
- 2. Electroweak precision observables (M_W, m_t, \dots)
- 3. Flavor-related observables $(B, D, K \text{ physics}, \dots)$
- 4. Astro-physical observables (CDM density, ...)
- 5. . . .

On the importance of the interplay of high Q^2 and low-energy B-physics:

Q: How to determine the Lagrangian that describes the world?

A: Measure as much as possible

- 1. Direct discoveries/measurements (masses, mixing angles, ...)
- 2. Electroweak precision observables (M_W, m_t, \dots)
- 3. Flavor-related observables $(B, D, K \text{ physics}, \dots)$
- 4. Astro-physical observables (CDM density, ...)
- 5. . . .
- ⇒ Interplay of the various observables/measurements?
- ⇒ combination of tools
- ⇒ combination of benchmarks

Example: NMFV MSSM

("my" NMFV: non-zero off-diagonal entries at low energies)

[taken from M. Ciuchini '07]

2. Tools

Some history from the first LHC/Flavor workshop:

idea: let's do the tools of WG1 and WG2 together

⇒ substantial differences showed up

WG1: (quoting from our email exchange :-)

- more ATLAS/CMS oriented
- tools more relevant for (many) experimentalists
- examples: Pythia, Sherpa, Photos, . . .

WG2:

- more theory/theorists oriented tools?
- more low-energy codes to map out parameter space?
- more single/special purpose codes?(notice the question marks!)

Real differences?

Indeed: Pythia, Herwig, Sherpa, ... not in our focus

Status of "Flavor related tools":

still based on old WG2 activities...

Starting point to get an overview (and re-sent recently): email to all WG1/WG2 participants, asking for

- What does your tool/code do?
 In which model?
 What is the input?
 What is the output?
 (In case of SUSY: is it SLHA(2) compatible?)
- Are there published results obtained with this tool/code?
 Did you present it already during this workshop course?
 If not, are you interested in a presentation?
- Is the tool/code public?(Does even a manual exist?)
- What does the tool/code not do, i.e. what are its limitations?
- What are your future plans?

\Rightarrow Only 13+X+Y answers . . .

 \Rightarrow Only 13+X+Y answers . . .

(leave out what is not (planned to be) public)

However/at least:

As you will see: some variety:

- codes for low-energy observables
- codes for high-energy observables
- codes for the calculation of amplitudes
- codes for connecting the GUT and the (flavor)experimental scale
- codes to pass parameters/results from one code to another
- codes for UT/CKM fits (X)
- codes to facilitate the interplay (Y)

And this is what there is:

(ordered roughly thematically)

Code # 1:

Name: no name [Silvestrini]

Description: $K\bar{K}$ mixing, $B_{(s)}\bar{B}_{(s)}$ mixing, $b\to s\gamma$, $b\to s\,l^+l^-$

in NMFV MSSM

Availability: planned

Code # 2:

Name: no name [Isidori, Paradisi]

Description: low-energy flavor observables in the MFV MSSM

Availability: planned/partially public

Code # 3:

Name: no name [Bobeth, Ewerth, Haisch]

Description: rare B and K decays in/beyond SM

Availability: planned

Code # 4:

Name: no name [Chankowski, Jäger, Rosiek]

Description: FCNC observables in MSSM

Availability: planned

Code # 5:

Name: no name [Bozzi, Fuks, Klasen]

Description: squark/gluino production at LO for NMFV MSSM

Availability: planned

Code # 6:

Name: FCHDECAY [Bejar, Guasch]

Description: FCNC Higgs decays in NMFV MSSM

Availability: yes (web page)

Code # 7:

Name: FeynHiggs [Hahn, SH, Hollik, Rzehak, Weiglein]

Description: Higgs/EWPO phenomenology in the (N)MFV (complex) MSSM

Availability: yes (manual, web page, \oplus on-line version)

Code # 8:

Name: no name [Bejar, Guasch]

Description: FC Higgs/top decays in 2HDM I/II

Availability: planned

Code # 9:

Name: FeynArts/FormCalc [Hahn]

Description: (arbitrary) one-loop corrections in (N)MFV MSSM

Availability: yes (manual, web page)

Code # 10:

Name: SLHALib2 [Hahn]

Description: read/write SLHA2 data, i.e. NMFV/RPV/CPV MSSM, NMSSM

Availability: yes (manual, web page)

→ more on SLHA2 later

Code # 11:

Name: Spheno [Porod]

Description: evaluates NMFV MSSM parameters from GUT scale input

Availability: yes (manual, web page)

Code # 12:

Name: SoftSUSY [Allanach]

Description: evaluates NMFV MSSM parameters from GUT scale input

Availability: yes (manual, web page)

Code # 13:

Name: MicrOMEGAs [Belanger, Boudjema, Pukhov, Semenov]

Description: CDM density, some B-physics observables in MFV MSSM

Availability: yes (manual, web page)

Still true:

Would be nice if the "planned availability" codes would really become available, including manual, web page etc.

Code # 13+X, X=1:

Name: UTfit

Description: Unitarity Triangle fits (Bayesian), in SM and beyond

Availability: yes (web page)

Code # 13+X, X=2:

Name: CKMFitter

Description: CKM fits (Frequentist), (mostly) in SM

Availability: yes (web page)

⇒ all codes including short description are included in our write-up for the LHC/Flavor workshop

Code # 13+X, X=1:

Name: UTfit

Description: Unitarity Triangle fits (Bayesian), in SM and beyond

Availability: yes (web page)

Code # 13+X, X=2:

Name: CKMFitter

Description: CKM fits (Frequentist), (mostly) in SM

Availability: yes (web page)

⇒ all codes including short description are included in our write-up for the LHC/Flavor workshop

Code # 13+X+Y:

Description: combination of various tools $(\Rightarrow interplay!)$

 \Rightarrow see below

Recent updates/additions for flavor related tools (I):

NEW: Code # 2:

Name: no name [Isidori, Paradisi]

Description: low-energy flavor observables in the MFV MSSM

Now included: BR($b \to s\gamma$), ΔM_{B_s} , BR($B_s \to \mu^+\mu^-$), BR($B_u \to \tau\nu_\tau$), BR($B_s \to X_s\ell\ell$), BR($K \to \tau\nu_\tau$), Δm_K , BR($K \to \pi\nu\nu$), BR($K \to \ell\ell$)

NEW: XSusy [Bozzi, Fuks, Herrmann, Klasen]

Description: masses, production cross sections, BR in NMFV MSSM

Availability: partially (partial SLHA2 compatibility)

Recent updates/additions for flavor related tools (II):

NEW: SuperIso [Mahmoudi]

Description: isospin asymmetries in the MFV MSSM

Availability: yes

NEW: SuperBSG [Degrassi, Gambino, Slavich]

Description: BR($b \rightarrow s\gamma$) in the MFV MSSM (highest precision)

Availability: yes

Anything else? Please talk to me (now?)!

Other codes (I):

not mentioned so far, since no flavor related models/observables are used/calculated

However: still relevant for interplay

Name: DarkSUSY [Gondolo et al.]

Description: CDM, σ_{χ} for direct DM detection

Availability: yes (manual, web page)

Name: Isajet/Isasusy [Baer, Paige, Protopopescu, Tata]

Description: MFV MSSM parameters from GUT scale input

Availability: yes (manual, web page)

Name: Suspect [Djouadi, Kneur, Moultaka]

Description: MFV MSSM parameters from GUT scale input

Availability: yes (manual, web page

Other codes (II):

not mentioned so far, since no flavor related models/observables are used/calculated

However: still relevant for interplay

Name: FeynWZ/SUSYPope [SH, Hollik, Weber, Weiglein]

Description: electroweak precision observables in the MFV (complex) MSSM

Availability: planned/partially public

Recent overview about SUSY related tools:

[B. Allanach, hep-ph/0805.2088]

Tools on the market:

- codes for B, K physics observables
- codes for low-energy (ew) observables
- codes for high-energy observables
- codes for the calculation of amplitudes
- codes for connecting the GUT and the (flavor)experimental scale
- codes to pass parameters/results from one code to another
- codes for UT/CKM fits

General questions:

- What is still missing? Are all relevant fields covered?
- How can it be ensured that code/calculation is useful for others?
- Can experimentalists make use of them?
- What are the wishes of the experimentalists?
- Interaction between theory and experiment?

Concerning the interplay issue:

One code/tool is good!

Many codes/tools are better!

Q: How can one connect different tools such that

- input/output is compatible
- (combination of) tools can be used by non-experts(non-expert = non-author of the code)
 - \Rightarrow mostly in the hands of the authors . . .

A: Two obvious possibilities (maybe more?):

- 1) Interface code that handles input/output → SLHA2
- 2) "Über-code" that interfaces various single codes
 - → two examples: MasterCode and GFitter

<u>A few words on SLHA2:</u> \Rightarrow MSSM (+ extensions) only! [P. Skands et al. '03 - '07]

SLHA(2) = Collection of rules to unambiguously define input/output

- interface for MSSM (+ extensions) tools (new models ⇔ priv. defs.)
- ASCII format
- Block structure for different parameters/observables
- parameters defined via Lagrangian
- observables defined via "agreement"

Spectrum generators \rightarrow cross section/decay packages \rightarrow event generators

- +: IT WORKS!
- : only if implemented by the authors of the code
- : "only" for MSSM + extensions

NEW: inclusion of NMFV/RPV/CPV in the MSSM + NMSSM:

SLHA → SLHA2

I/O made easy via SLHALib2 [*T. Hahn '06*]

C++ classes [*P. Skands '07*]

read/write SLHA2 data, i.e. NMFV/RPV/CPV MSSM, NMSSM

"Über-code" that interfaces various single codes

→ two examples: MasterCode and GFitter

MasterCode:

- → combination of other existing MSSM codes
- \rightarrow including *B*-physics code
- → Frederic Ronga's presentation

short summary \Rightarrow

GFitter:

- → new programming of observables in various sectors (mostly SM)
- \rightarrow B-physics observables for 2HDM
- → Henning Flächer's presentation

The "MasterCode"

⇒ collaborative effort of theorists and experimentalists

[Buchmüller, Cavanaugh, De Roeck, Ellis, Flächer, SH, Isidori, Olive, Paradisi, Ronga, Weiglein]

Über-code for the combination of different tools:

- tools are included as subroutines
- compatibility ensured by collaboration of authors of "MasterCode" and authors of "sub tools"
- one "MasterCode" for one model . . .
- ⇒ evaluate observables of one parameter point consistently with various tools

Example: flavor observables and high p_T observables can be combined

⇒ MAIN POINT of the 2. LHC/Flavor workshop and this Focus Week!

Status of the "MasterCode":

- one model: (MFV) MSSM
- tools included:
 - code # 2: B-physics observables [Isidori, Paradisi]
 - more B-physics observables [SuperIso]
 - code # 7: Higgs related observables, $(g-2)_{\mu}$ [FeynHiggs]
 - Electroweak precision observables [FeynWZ/SUSYPope]
 - Dark Matter observables [MicrOMEGAs, DarkSUSY]
 - for GUT scale models: RGE running [SoftSUSY, Suspect]
- added: χ^2 analysis code (\rightarrow similar directions as SFitter, Fittino)
- planned: inclusion of more tools inclusion of more models

Use of the "MasterCode":

Now:

- $-\ \chi^2$ fits in the CMSSM using today's data
- $-\chi^2$ fits in other constrained models (work in progress)
- $-\chi^2$ fits also including anticipated future data
 - ⇒ SuperB activities
- more details by Oliver

Future: Test (future) data with various tools

Discussion?

A: Two obvious possibilities (maybe more?):

Interface code that handles input/output → SLHA2
 Enough for flavor?
 Flavor specific extension?

More model independent approach?

→ Uli's/Gudrun's discussion trigger
How to get people converge? (SLHA was a HUGE effort!)
...?

2) "Über-code" that interfaces various single codes

Wanted/accepted?
How to include more tools?
How to include updates of tools?
...?

3) ...?

3. Benchmarks

... are not a new idea ...

a set of parameter points in a (your favorite) model (beyond the SM)

- Required for BSM searches at colliders (past, present, future)
 - → often it is not feasible to scan over all parameters
- Map out the characteristics of the parameter space
- Take into account all(?) possibilities
- Ensure compatibility with all(?) current bounds
 - searches for new particles
 - (low-energy) flavor bounds
 - (low-energy) electroweak precision bounds
 - cold dark matter

— . . .

Benchmarks can be used to:

- Study the performance of different detectors
- Study the performance of different experiments
- Perform very detailed studies
- Analyzing the complementarity of different experiments
- Work out synergy effects of different experiments

Prime example from the past: SPS (Snowmass points and slopes) (especially SPS 1a)

[hep-ph/0202233]

External constraints?

If a benchmark is designed to test one sector of a specific model

- ⇒ should constraints from other sectors be taken into account?
- ⇒ could they be easily avoided?

If a benchmark is designed to test collider phenomenology

then little changes that do not affect the collider phenomenology can easily avoid:

- bounds from cold dark matter
- bounds on $(g-2)_{\mu}$
- b physics constraints

My main wish:

Study collider phenomenology in (SUSY) models that are compatible with

- direct experimental searches
- flavor physics constraints
- precision observables constraints

My main wish:

Study collider phenomenology in (SUSY) models that are compatible with

- direct experimental searches
- flavor physics constraints
- precision observables constraints

Special(?) approach for SUSY:

Find/use points as described above (in the (N)MFV MSSM) . . . that show interesting phenomenology in low- and high-energy experiments

- ⇒ study the complementarity of the low/high-energy experiments
- ⇒ study the synergy of the low/high-energy experiments
- i.e. combine results from all sources to pin down the (N)MFV MSSM
- ... but this seems to be very difficult

- ⇒ study the complementarity of the low/high-energy experiments
- ⇒ study the synergy of the low/high-energy experiments

Three approaches/results:

- 1. Take the good old SPS points some of them have been studied in quite detail
 - → evaluate LHC measurements
 - \Rightarrow investigate what B-physics can add \Rightarrow SuperB activities
- 2. Take a GUT based model with flavor violation
 - → fit to current data
 - → fit to anticipated LHC data
 - \Rightarrow investigate what B-physics can add (in the future) not realized yet . . . possible models?
- 3. Define benchmark scenarios (in GUT based models)
 - → investigate compatibility with all constraints
 - \Rightarrow investigate what B-physics can add (in the future)
 - ⇒ realized in NUHM

Impact and prospects of BPO in NUHM benchmarks

[J. Ellis, S.H., K. Olive, A.M. Weber, G. Weiglein '07][J. Ellis, T. Hahn, S.H., K. Olive, G. Weiglein '07]

NUHM: (Non-universal Higgs mass model)

 \Rightarrow besides the CMSSM parameters $(m_{1/2},\ m_0,\ A_0,\ \tan\beta)$ $$M_A$$ and μ

Assumption:

no unification of scalar fermion and scalar Higgs parameters at the GUT scale

- \Rightarrow effectively M_A and μ free parameters at the EW scale
- ⇒ particle spectra from renormalization group running to weak scale

Lightest SUSY particle (LSP) is the lightest neutralino

 \Rightarrow possible: M_A —tan β planes in agreement with CDM :-)

 \Rightarrow good χ^2 $(M_W, \sin^2\theta_{\rm eff}, \Gamma_Z, M_h, (g-2)_{\mu}, BR(b \to s\gamma)$ and other BPO) \Rightarrow larger regions o.k.

Impact of BPO on plane 2:

⇒ so far mostly "mild" impact

Impact of BPO on plane 3:

⇒ so far mostly "mild" impact

Future prospects:

BR(
$$B_s \to \mu^+ \mu^-$$
) = 1.0(0.2) × 10⁻⁷ [, LHCb]
BR($b \to s \gamma$) = 4.0(3.0) × 10⁻⁴
BR($B_u \to \tau \nu_{\tau}$) = 0.9(0.7)

Future prospects:

⇒ Improvement in precision for BPO is needed!

Improvement in precision for BPO will help a lot!

4. SuperB activities

→ work done in the framework of the latest SuperB workshop, application of the MasterCode

[special thanks to Frederic Ronga — who did most of the work!]

Main idea:

Assumptions:

- LHC has collected 300 fb $^{-1}$
- CMSSM is a good description of observed data
- no (clear) sign of NMFV at the LHC
- data favors a certain SPS point

Impact of SuperB?

- Predictions for flavor observables?
- Can these predictions be constrained by SuperB?
- Can SuperB restrict the NMFV parameters?

Assumption (I): SPS1a realized ("typical" CMSSM scenario)

LHC friendly (light) spectrum cascades possible:

$$\tilde{q}_L \to \tilde{\chi}_2^0 q \to \tilde{l}_R \ell q \to \tilde{\chi}_1^0 \ell \ell q$$

edge measurements:

$$(m_{\ell\ell}^2)^{ ext{edge}} = rac{(m_{ ilde{\chi}_2^0}^2 - m_{ ilde{l}_R}^2)(m_{ ilde{l}_R}^2 - m_{ ilde{\chi}_1^0}^2)}{m_{ ilde{l}_R}^2} \ (m_{q\ell\ell}^2)^{ ext{edge}} = rac{(m_{ ilde{q}_L}^2 - m_{ ilde{\chi}_2^0}^2)(m_{ ilde{l}_R}^2 - m_{ ilde{\chi}_1^0}^2)}{m_{ ilde{l}_R}^2} \ (m_{q\ell}^2)^{ ext{edge}}_{ ext{min}} = rac{(m_{ ilde{q}_L}^2 - m_{ ilde{\chi}_2^0}^2)(m_{ ilde{l}_R}^2 - m_{ ilde{l}_R}^2)}{m_{ ilde{l}_R}^2} \$$

Assumption (I): SPS1a realized ("typical" CMSSM scenario)

Results based on 300 fb $^{-1}$ (2014) $^{\mathrm{m}}$ [GeV] 700

$(m_{\ell\ell})^{ m edge} = 58.9 \pm 0.1 \; { m GeV}$ $(m_{q\ell\ell})^{ m edge} = 451.1 \pm 4.5 \; { m GeV}$ $(m_{a\ell})^{ m edge}_{ m min} = 317.5 \pm 3.1 \; { m GeV}$

Combination with all other constraints:

Edge measurements:

$$m_{1/2} = 250.0 \pm 1.1 \; {\rm GeV}$$

 $m_0 = 100.0 \pm 1.5 \; {\rm GeV}$
 $A_0 = 100 \pm 30 \; {\rm GeV}$
 $\tan \beta = 9.8 \pm 1.2$

⇒ Strong impact of LHC constraints on (SPS1a) flavor sector:

Toy MC analysis for flavor observables:

⇒ consistent prediction of flavor observables

- ⇒ Strong impact of LHC constraints on (SPS1a) flavor sector:
- ⇒ consistent prediction of flavor observables

no CKM uncertainties included ⇒ errors only from fit!

theory errors:
$$\sim$$
 3% $(K_L \to \pi^0 \nu \bar{\nu})$... \sim 25% (ΔM_{B_s})

$$\mathcal{R}(b \to s \gamma) = 0.919 \pm 0.038$$
 $\mathcal{R}(B_u \to \tau \nu_{\tau}) = 0.968 \pm 0.007$
 $\mathcal{R}(B_s \to X_s \ell^+ \ell^-) = 0.916 \pm 0.004$
 $\mathcal{R}(B \to K \nu \bar{\nu}) = 0.967 \pm 0.001$
 $\text{BR}(B_s \to \mu^+ \mu^-) = (2.824 \pm 0.063) \times 10^{-9}$
 $\text{BR}(B_d \to \mu^+ \mu^-) = (1.631 \pm 0.038) \times 10^{-10}$
 $\mathcal{R}(\Delta M_{B_s}) = 1.050 \pm 0.001$
 $\mathcal{R}(K_L \to \pi^0 \nu \bar{\nu}) = 0.973 \pm 0.001$

- ⇒ Strong impact of LHC constraints on (SPS1a) flavor sector:
- ⇒ consistent prediction of flavor observables
 no CKM uncertainties included ⇒ errors only from fit!

theory errors:
$$\sim 3\%~(K_L \to \pi^0 \nu \bar{\nu})~\dots~\sim 25\%~(\Delta M_{B_s})$$

$$\mathcal{R}(b \to s \gamma) = 0.919 \pm 0.038$$
 $\mathcal{R}(B_u \to \tau \nu_{\tau}) = 0.968 \pm 0.007$
 $\mathcal{R}(B_s \to X_s \ell^+ \ell^-) = 0.916 \pm 0.004$
 $\mathcal{R}(B \to K \nu \bar{\nu}) = 0.967 \pm 0.001$
 $\text{BR}(B_s \to \mu^+ \mu^-) = (2.824 \pm 0.063) \times 10^{-9}$
 $\text{BR}(B_d \to \mu^+ \mu^-) = (1.631 \pm 0.038) \times 10^{-10}$
 $\mathcal{R}(\Delta M_{B_s}) = 1.050 \pm 0.001$
 $\mathcal{R}(K_L \to \pi^0 \nu \bar{\nu}) = 0.973 \pm 0.001$

- ⇒ SuperB could not see deviations if SPS1a (MFV) is realized
- ⇒ any deviation would prove NMFV!

Assumption (II): SPS5 realized (CMSSM scenario with light \tilde{t})

still LHC friendly (light \tilde{t})

cascades possible:

$$\tilde{q}_L \to \tilde{\chi}_2^0 q \to \tilde{l}_R \ell q \to \tilde{\chi}_1^0 \ell \ell q$$

edge measurements:

$$(m_{\ell\ell}^2)^{
m edge} = rac{(m_{ ilde{\chi}_2^0}^2 - m_{ ilde{l}_R}^2)(m_{ ilde{l}_R}^2 - m_{ ilde{\chi}_1^0}^2)}{m_{ ilde{l}_R}^2} \ (m_{q\ell\ell}^2)^{
m edge} = rac{(m_{ ilde{q}_L}^2 - m_{ ilde{\chi}_2^0}^2)(m_{ ilde{l}_R}^2 - m_{ ilde{\chi}_1^0}^2)}{m_{ ilde{l}_R}^2} \ (m_{q\ell}^2)^{
m edge}_{
m min} = rac{(m_{ ilde{q}_L}^2 - m_{ ilde{\chi}_2^0}^2)(m_{ ilde{l}_R}^2 - m_{ ilde{l}_R}^2)}{m_{ ilde{l}_R}^2} \$$

⇒ Strong impact of LHC constraints on (SPS5) flavor sector:

Toy MC analysis for flavor observables:

⇒ relatively consistent prediction of flavor observables

- ⇒ Strong impact of LHC constraints on (SPS5) flavor sector:
- \Rightarrow relatively consistent prediction of flavor observables no CKM uncertainties included \Rightarrow errors only from fit! theory errors: $\sim 3\%~(K_L \to \pi^0 \nu \bar{\nu})~\dots~\sim 25\%~(\Delta M_{B_0})$

$$\mathcal{R}(b \to s \gamma) = 0.848 \pm 0.081$$
 $\mathcal{R}(B_u \to \tau \nu_{\tau}) = 0.997 \pm 0.003$
 $\mathcal{R}(B_s \to X_s \ell^+ \ell^-) = 0.995 \pm 0.002$
 $\mathcal{R}(B \to K \nu \bar{\nu}) = 0.994 \pm 0.001$
 $\mathcal{R}(B_s \to \mu^+ \mu^-) = (3.427 \pm 0.018) \times 10^{-9}$
 $\mathcal{R}(B_d \to \mu^+ \mu^-) = (1.979 \pm 0.012) \times 10^{-10}$
 $\mathcal{R}(\Delta M_{B_s}) = 1.029 \pm 0.001$
 $\mathcal{R}(K_L \to \pi^0 \nu \bar{\nu}) = 0.994 \pm 0.001$

- ⇒ Strong impact of LHC constraints on (SPS5) flavor sector:
- \Rightarrow relatively consistent prediction of flavor observables no CKM uncertainties included \Rightarrow errors only from fit! theory errors: $\sim 3\%~(K_L \to \pi^0 \nu \bar{\nu})~\dots~\sim 25\%~(\Delta M_{B_s})$

$$\mathcal{R}(b \to s \gamma) = 0.848 \pm 0.081$$
 $\mathcal{R}(B_u \to \tau \nu_{\tau}) = 0.997 \pm 0.003$
 $\mathcal{R}(B_s \to X_s \ell^+ \ell^-) = 0.995 \pm 0.002$
 $\mathcal{R}(B \to K \nu \bar{\nu}) = 0.994 \pm 0.001$
 $\text{BR}(B_s \to \mu^+ \mu^-) = (3.427 \pm 0.018) \times 10^{-9}$
 $\text{BR}(B_d \to \mu^+ \mu^-) = (1.979 \pm 0.012) \times 10^{-10}$
 $\mathcal{R}(\Delta M_{B_s}) = 1.029 \pm 0.001$
 $\mathcal{R}(K_L \to \pi^0 \nu \bar{\nu}) = 0.994 \pm 0.001$

- \Rightarrow SuperB could not see deviations if SPS5 (MFV) is realized (exc. $b \rightarrow s\gamma$?)
- ⇒ any deviation would prove NMFV!

5. Conclusions

- Tools are an essential part of the interplay issue!
- codes for: low-energy observables
 high-energy observables
 the calculation of amplitudes
 connecting the GUT and the (flavor)experimental scale
 pass parameters/results from one code to another
 UT/CKM fits
 interplay: MasterCode! GFitter?
- Combination of codes:
 - SLHA(2) for (N)MFV/RPV/CPV MSSM, NMSSM \Rightarrow flavor physics?
 - "MasterCode" (various sub-tools included, more is planned) $\Rightarrow \chi^2$ analysis performed in CMSSM, NUHM, ...
- Benchmarks are needed to compare experiments/study interplay
 - SPS analysis ⇒ SuperB activities
 - benchmark planes in agreement with all data → BPO impact
- Future: what is missing?
 how to proceed with combination?
 SLHA-type agreement for flavor physics?
 LHC/Flavor workshop: dedicated tools activities

TOOLS 2008 at MPI in Munich, Germany:

Back-up

Q: Can YOU do phenomenology with these new benchmarks	5?

Q: Can YOU do phenomenology with these new benchmarks?

A: YES! Of course!

Q: Can YOU do phenomenology with these new benchmarks?

A: YES! Of course!

```
They are included in FeynHiggs available at www.feynhiggs.de
```

You specify:

- number of the plane
- $-M_A$ and an eta

You get:

- all low energy parameters
- Higgs masses and mixings
- all Higgs branching ratios
- all Higgs production cross sections
- further precision observables

New M_A —tan β planes:

Data accessed within FeynHiggs in terms of tables with a grid for M_A and $\tan\beta$

MT	MSUSY	MA0	TB	AT	MUE	
171.4	500	200	5	1000	761	
171.4	500	210	5	1000	753	
:	:	ŧ	÷	ŧ	i	:
171.4	500	200	6	1000	742	
171.4	500	210	6	1000	735	
:	:	÷	:	:	:	:

FeynHiggs interpolates between the four NWSE points in M_A and $\tan\beta$ FeynHiggs gives an error if $\{M_A, \tan\beta\}$ combination is not allowed

4 M_A —tan β planes can be downloaded from www.feynhiggs.de Definition of new planes by the user is possible (respect table format)