G fitter

A Generic Fitter Project for HEP Model Testing

- The standard electroweak precision fit
- Constraining the 2HDM parameter space

Henning Flächer (CERN)
Martin Göbel (Uni HH/DESY)
Johannes Haller (Uni HH/DESY)
Andreas Höcker (CERN)
Klaus Mönig (DESY)
Jörg Stelzer (DESY)

The Gfitter Project

- Gfitter A Generic Fitter Project for HEP Model Testing http://cern.ch/Gfitter
- Written in C++ and built upon ROOT
- Organized in one core statistic/fitting package, and physics plugin packages
 - > SM, Two Higgs Doublet, SUSY, etc.
- Dynamic parameter caching => fast
 - Only Recalculation of parameters when needed
- Based on frequentist analysis
 - CL by toy-analysis
 - Goodness of fit by toy-analysis
- Transparent fitting and steering card interpretation
 - Usage of XML format
- User-friendly and flexible tool

Global fit of the Electroweak Standard Model

Comparison of electroweak precision observables with SM theory

- <u>Idea:</u> Radiative corrections give precise predictions for EW observables
- 7 free parameters:

$$\left(\Delta\alpha_{had}^{(5)}(M_Z^2), \alpha_S(M_Z^2), M_Z, M_H, m_{top}\right) \left(m_{c,m_b}\right)$$

- We use the on-mass-shell (OMS) scheme (like Zfitter)
 - Complete two loop corrections incl.
 the known higher order QCD and
 QED for most of the observables
- Currently most precise calculations
 - NNNLO corrections for hadronic Z decays [Baikov,Chetyrkin,Kühn]
 - Complete two-loop plus known three-loop corrections for M_W and sin²O_{eff} [Awramik, et al.]

- 21 free parameters in the SM Lagrangian can be reduced to 5 (7) floating fit parameters:
 - photon mass and neutrino masses = 0
 - charged leptons and light quark masses are small compared to M_Z and/or precisely measured
 - Hardly any influence on the fit result
 - M_W and M_Z are coupled via the weak coupling constant G_F
 - M_w can be computed
 - G_F is one of the most precise measurements in physics
 - G_F is treated as constant

Prediction of the Higgs Mass

Without direct Higgs Searches

Verified with toy analysis

$$\chi^{2}_{min} = 16.4$$
 $M_{H} = 82^{+31}_{-24} \ GeV \ M_{H} < 160 \ GeV \ at 95\% \ CL$

Treatment of theo. Uncertainties: mainly $M_W \pm \Delta M_W(theo) \sin^2 \Theta_{eff}^{lept} \pm \Delta \sin^2 \Theta_{eff}^{lept}(theo)$

New Treatment: (à la Rfit [CKMFITTER])

If measurement

- within theory uncertainty: **no contribution** to χ^2 .
- outside theory uncertainty: χ² determined by distance between measurement and prediction ± uncertainty

Old Treatment:

Band was done by **shifting** the predictions by these uncertainties **redoing** the scan and **choosing** the worst cases

Testing the Standard Model

Goodness of global fit (by using toy analysis)

- Generate toy sample by random sampling from Gaussian distributions around initial fit results (Correlations are taken into account)
- Refit with new values for observables, obtain a new χ^2

P-value:

- Probability for wrongly rejecting the SM
- for getting a χ^2 larger than the χ^2 of the fit

p-value for electroweak fit for given Higgs masses (assuming negligible errors)

- Compute p-values for fixed Higgs masses using toy experiment method
- Here: p-value is greater than for fit with free Higgs mass
 - Higgs mass fixed
 - \triangleright n_{dof} increased by one

Prediction of the Higgs Mass (II)

Including constraints from direct Higgs Searches

Tevatron:

Inclusion of direct searches provides more stringent constraint:

$$\chi_{\min}^2 = 17.9$$
 $M_H = 120^{+16}_{-5} \ GeV$
 $M_H < 145 \ GeV \ at 95\% \ CL$

Two-Dimensional Scans

- When m_{top} measurement removed: allowed band rather big
- Good constraint if m_{top} measurement is included
- Positive correlation value between
 M_H and m_{top} (blue contours)

- However need more precision on W and top mass measurements
- Good probe of SM, if M_H is measured

Extension beyond Standard Model

- 2HDM (type-II) as a first step
- Add an extra Higgs doublet to SM
 - > One doublet couples to the up-type fermions
 - > One doublet couples to the down-type fermions
- 6 free parameters

$$M_{H^{\pm}}, M_{A^0}, M_{H^0}, M_h$$
 $\tan \beta = \frac{v_1}{v_2}, |\alpha| \le \frac{\pi}{2}$

$$\tan \beta = \frac{v_1}{v_2}, |\alpha| \le \frac{\pi}{2}$$

- \triangleright α relates mass eigenstates with the field doublet
- So far only looked at processes involving a charged Higgs exchange
 - \triangleright Sensitivity to M_{H+} and tanß
- This is work in progress

Sensitive Observables

 Study Observables sensitive to charged Higgs exchange

$$d, u$$
————— d, u

> (semi-)leptonic Meson decays

•
$$B \rightarrow \tau v$$

- B → Dτυ
- $K \rightarrow \mu \nu$

- Hadronic branching ratio of Z to b-quarks R_b
- Gfitter package provides easy way to propagate all exp. and theo. uncertainties into limits

$B \rightarrow X_s \gamma$

Experimental World Average:

BF(B
$$\to$$
X_s γ) = (3.52 ± 0.25) 10⁻⁴

SM prediction:

BF(B
$$\to$$
 X_s γ) = (3.23 ± 0.15) 10⁻⁴

Branching fraction only sensitive to small $tan\beta$ What is the correct N_{dof} ?

Do we only want to set a lower limit on M_H ? (one-sided vs two-sided CL intervals)

$B \rightarrow \tau \nu$, $B \rightarrow D\tau \nu$ and $K \rightarrow \mu \nu$

BF(B→Iv) dependence on $M_{H_{+}}$ and tanβ:

$$\Gamma(P \to \ell \nu) = \frac{G_F^2}{8\pi} f_P^2 \ m_\ell^2 M_P \left(1 - \frac{m_\ell^2}{M_P^2} \right)^2 |V_{q_1 q_2}|^2$$

$$BR_{2HDM} = BR_{SM} (1 - (\tan \beta m_B/m_H)^2)^2$$

$$BR(B \to \tau \nu) = (1.41 \pm 0.43) \cdot 10^{-4}$$

Similar for B \rightarrow D τv

$$\frac{BR(B \to D\tau \nu)}{BR(B \to De\nu)} = 0.416 \pm 0.117_{stat} \pm 0.052_{syst}$$

Hou, Phys.Rev.D48:2342-2344,1993

FlaviaNet 0801.1817[hep-ph]

$Z \rightarrow bb$

The complete picture

- Higgs exchange modifies left- and right- handed couplings
- We use value for R_b from our SM fit: $R_b = 0.21580 \pm 0.00007$
- LEPEWWWG
 R_b = 0.21629 ± 0.00066
- Only sensitive to 2HDM parameter space at low tanβ

Overlay of individual 95% CL excluded regions

(assuming 1 dof, two-sided limits)

Constraint on 2HDM (type II)

Combining all these measurements in one fit:

(results depend on assumptions made)

The "truth" is probably somewhere in between.

Will perform dedicated toy studies for grid in M_H -tan β plane to resolve degrees of freedom and one-sided vs two-sided limits

Flavour at the LHC

Conclusions

- Gfitter is a generic Fitting Tool for HEP analysis testing
 - user friendly, C++, ROOT based
- The Gfitter SM fit
 - Including direct Higgs searches
 - → M_H<145 GeV at 95% CL
 </p>
 - \rightarrow p-value of SM = 0.254±0.004
- Constraints in 2HDM parameter space
 - Simultaneous fit of several constraints
 - will include statistical interpretation based on toy experiments
- Plan is to extend/interface to more general SUSY models
- Gfitter paper in preparation!

http://www.cern.ch/gfitter