

Early New Physics Reach: CMS

Oliver Buchmüller (CERN)
Flavour as a Window to New Physics at the LHC
[Flavour/High-Q2 Interplay Focus Week]

- Construction Status of CMS
 - Physics Commissioning
- Early New Physics Reach of CMS

Status of the Experiment

CMS: Beam-pipe at both sides installed

Getting Ready: Scale of Global Operations

CMS Status: Summary

- Very good progress in global commissioning
- CMS closed by mid-July
 - Pixel detectors installed and at least one ECAL endcap installed
- Ready for full field magnet re-test underground
- Ready for LHC beam
- Ready for physics at 10 TeV!

Physics Commissioning with the first collision data

LHC Startup

Slide from Mike Lamont

- 1 to N to 43 to 156 bunches per beam
- N bunches displaced in one beam for LHCb
- Pushing gradually one or all of:
 - □ Bunches per beam
 - □ Squeeze
 - □ Bunch intensity

IP 1 & 5

Bunches	β*	l _b	Luminosity	Event rate
1 x 1	11	10 ¹⁰	~10 ²⁷	Low
43 x 43	11	3 x 10 ¹⁰	6 x 10 ²⁹	0.05
43 x 43	4	3 x 10 ¹⁰	1.7 x 10 ³⁰	0.21
43 x 43	2	4 x 10 ¹⁰	6.1 x 10 ³⁰	0.76
156 x 156	4	4 x 10 ¹⁰	1.1 x 10 ³¹	0.38
156 x 156	4	9 x 10 ¹⁰	5.6 x10 ³¹	1.9
156 x 156	2	9 x 10 ¹⁰	1.1 x10 ³²	3.9

After initial commissioning phase 156x156 running of another month could yield ~40pb⁻¹ @ 10 TeV in 2008

Produced Events in the very First Days

30 days at $3x10^{29}$ with efficiency 20% = 0 .15 pb⁻¹

Assumed Efficiencies $\epsilon(W) = 0.3 \; \epsilon(Z) = 0.5 \; \epsilon(ttbar) = 0.02$

Events after one Month

Min Bias : $\sim 10^{10}$

 $Jet_{Ft>25}$: ~108

 $W \rightarrow \ell \nu$: ~10³

 $Z \rightarrow \ell \ell$: ~10²

 $tt \rightarrow \ell v + X : \sim 10^{1}$

14 TeV

First mainly used for general commissioning and detector alignment & calibration.

Produced Events in the very First Days

30 days at $3x10^{29}$ with efficiency 20% = 0 .15 pb⁻¹

Production Rate: 10 vs.14 TeV

- W/Z ~70%
- ttbar ~50%
- Higgs (200) ~50%

Assumed Efficiencies $\epsilon(W)$ =0.3 $\epsilon(Z)$ =0.5 $\epsilon(ttbar)$ =0.02

Events after one Month

Min Bias : $\sim 10^{10}$

 $Jet_{Ft>25}$: ~10⁸

 $W \rightarrow \ell v$: ~10³

 $Z \rightarrow \ell \ell$: ~10²

 $tt \rightarrow \ell v + X : \sim 10^{1}$

14 TeV

First mainly used for general commissioning and detector alignment & calibration.

First Phase

"Why":Measure Charged Particle Density

- W,Z, ttbar cross sections known to ~3 to 10%
- Large uncertainties in minimum bias dN_{ch}/dη known to only ~50% (or worse)

Second Phase

Re-discover the SM

- Reestablish the Standard Model
- Most SM cross sections are significantly higher than at the Tevatron

e.g.
$$\sigma_{ttbar}$$
 (LHC)> 100 x σ_{ttbar} (Tevatron)

Crucial for final Detector and Physics commissioning

THE path to new physics! 14 TeV

At Luminosity 10³¹cm⁻²s⁻¹

bb production: $\rightarrow 10^3 \text{ Hz}$

 $W \rightarrow \ell \nu$: $\rightarrow 0.1 \text{ Hz}$

 $Z \rightarrow \ell \ell$: $\rightarrow 0.01 \text{ Hz}$

t t production: \rightarrow 0.01 Hz

SM Higgs \rightarrow 0.0001 Hz

At this stage the LHC becomes a real SM Factory!

Example: Top Events as a Tool

Early (New) Physics Reach of CMS

Focus mainly on the physics reach for a few pb-1 up to 1fb-1

- e.g. few hundred pb⁻¹ expected for 2008/2009
- interplay between commissioning and physics will be significant

A few Illustrative Examples

• very early : Di-lepton and Di-jet signatures

• early : more "exotic" signatures

• early : low mass SUSY ("SUSY-like" - as a detailed example)

(probably) later : SM-Higgs (backup)

By far not an exhaustive list!
There are many more exciting (new) physics topic but no time to cover here!

New Physics Search with Di-jets

Contact Interaction

Exited Quarks

Small systematic due to use of ratio: Di-jet Ratio = $N(|\eta|<0.7) / N(0.7<|\eta|<1.3)$

CMS	Excluded Λ (TeV)			Discovered Λ (TeV)		
	$10 \mathrm{pb^{-1}}$	$100 \mathrm{pb^{-1}}$	$1 { m fb}^{-1}$	$10 \mathrm{pb^{-1}}$	$100 \mathrm{pb^{-1}}$	1 fb ⁻¹
DØ and PTDR η cuts	< 3.8	< 6.8	< 12.2	< 2.8	< 4.9	< 9.1
Optimized η cuts	< 5.3	< 8.3	< 12.5	< 4.1	< 6.8	< 9.9

Significant discovery potential: e.g. up to Λ ~10 TeV in 2008/2009

Di-lepton Resonances

Because of their clear signature di-lepton resonances have always been subject of new physics searches.

At the LHC they are predicted to arise in many BSM models:

Clear signatures: $\mu^+\mu^-$ and e^+e^- final state

Di-lepton Resonances (Example Z')

Di-lepton Resonances (Example Z')

GMSB and R-Hadrons

Curtsey of A. De Roeck

• GMSB: Non-pointing photons GMSB parameters N=1 $\tan\beta=1$ $\sin\mu=1$ $M_m=2\Lambda$

 χ ct lifetime extraction with ~20% precision

• GMSB: long living staus

GMSB parameters N=3 $\tan\beta=3$ $\sin\mu=1$ $M_m=2\Lambda$

stau mass extraction with a few % precision

• R-hadrons

trigger/mass meas. 115 for region $\beta > 0.6$

de/dx in the -31 tracker

β-tracker **β-muons**

18

Hidden Valley Events

Curtsey of A. De Roeck

"SUSY-like" signatures at the LHC

What I call "SUSY-like":

- Many hard Jets
- Large missing energy
 - 2 LSPs
 - Many neutrinos
- Many leptons
- In a word:
 - Spectacular!

M _{sp} (GeV)	σ (pb)	Evts/yr
500	100	$10^6 - 10^7$
1000	1	10 ⁴ -10 ⁵
2000	0.01	$10^2 - 10^3$

For low masses the LHC Would become a real SUSY factory

"SUSY-like" signatures at the LHC

What I call "SUSY-like":

- Many hard Jets
- Large missing energy
 - 2 LSPs
 - Many neutrinos
- Many leptons
- In a word:
 - Spectacular!

M _{sp} (GeV)	σ (pb)	Evts/yr
500	100	10 ⁶ -10 ⁷
1000	1	10 ⁴ -10 ⁵
2000	0.01	$10^2 - 10^3$

For low masses the LHC Would become a real SUSY factory

Needless to say that we also study carefully signatures of e.g. R-parity violating models!

 $m_{\tilde{\chi}_{0}}^{\sim} = 410 \text{ GeV}$

How do we characterize "SUSY-like"

"SUSY-like" Discovery Potential

Important signatures for the star Inclusive Search:

- Jet+Missing E_t &
 - 0 Lepton (e,μ)
 - 1 Lepton
 - 2 Leptons (same sign)
 - 2 Leptons (opposite sign)

Important SM Background:

- ttbar
- W/Z + Jets
- QCD (multi-jets)[difficult to simulate]

Background estimation:

•use control samples and side-band region to "measure" the background and/or tune your Monte Carlo.
→mainly "data-driven" (complemented with Monte Carlo)

CMS Reach for 1fb⁻¹ (ATLAS similar)

Other important signatures like di-taus, h→bb, Z and top production have also been studied but not covered in this talk!

"Preferred" SUSY Parameter Space

If these "LHC weather forecasts" are correct, SUSY will emerge very early!

For sure these tools will be very useful to solve the "inverse problem":

→Interpretation of discoveries

Example of similar analyses:

- •Ellis, Heinemeyer, Olive, Weber, Weiglein
- hep-ph/0706.0652
- Allanach, Lester, Weber hep-ph/0705.0487
- Trotta, Austri, Roszkowski hep-ph/0609126
- ... there are more!

SUSY (CMSSM) Reach: 14TeV vs. 10TeV

Comparison of SUSY production XS for 14TeV and 10TeV.

For 10TeV the reach is reduced but:

• 10 to 100pb⁻¹ start to cover our low mass (LM) SUSY points (i.e. interesting phase space) [assumes reasonably well understood data - of course]

 $10pb^{-1}$ (blue) and $100pb^{-1}$ (red) 5σ discovery lines are based on PTDRVII studies (simple scaling!).

For illustration only!

- Understand detector and SM background
 - Very difficult task main focus at the early days

- Understand detector and SM background
 - Very difficult task main focus at the early days
- Focus on generic "model independent" signatures (RP-conserving)
 - missing energy, multi-jets, leptons...
 - need to confirm discovery through multiple signatures

Missing Energy:

from LSP

Multi-Jet:

from cascade decay (gaugino)

Multi-Leptons:

from decay of charginos/neutranions

- Understand detector and SM background
 - Very difficult task main focus at the early days
- Focus on generic "model independent" signatures (RP-conserving)
 - missing energy, multi-jets, leptons...
 - need to confirm discovery through multiple signatures
- Extract constraints on SUSY properties from kinematics/decay chain reconstruction (assuming positive signal established)
 - Available observables are: sparticle masses, production cross section, decay chain properties (BR's, angular distributions, etc)

$$M_{\ell\ell}^{max} = M(ilde{\chi}_2^0) \sqrt{1 - rac{M^2(ilde{\ell_R})}{M^2(ilde{\chi}_2^0)}} \sqrt{1 - rac{M^2(ilde{\chi}_1^0)}{M^2(ilde{\ell_R})}}$$

- Understand detector and SM background
 - Very difficult task main focus at the early days
- Focus on generic "model independent" signatures (RP-conserving)
 - missing energy, multi-jets, leptons...
 - need to confirm discovery through multiple signatures
- Extract constraints on SUSY properties from kinematics/decay chain reconstruction (assuming positive signal established)
 - Available observables are: sparticle masses, production cross section, decay chain properties (BR's, angular distributions, etc)
- Match emerging pattern to SUSY model templates
 - Predict additional signatures to be observed (likely iterative procedure)
 - Demonstrate the fundamental SUSY properties (e.g. particle ⇔ spartice relations)

- Understand detector and SM background
 - Very difficult task main focus at the early days
- Focus on generic "model independent" signatures (RP-conserving)
 - missing energy, multi-jets, leptons...
 - need to confirm discovery through multiple signatures
- Extract constraints on SUSY properties from kinematics/decay chain reconstruction (assuming positive signal established)
 - Available observables are: sparticle masses, production cross section, decay chain properties (BR's, angular distributions, etc)
- Match emerging pattern to SUSY model templates
 - Predict additional signatures to be observed (likely iterative procedure)
 - Demonstrate the fundamental SUSY properties (e.g. particle ⇔ spartice relations)

Establish (or exclude) "SUSY-like" signatures

Jets + E_T^{miss} - Inclusive Search

Data Driven Background Estimations

The simplest example: $Z \rightarrow vv + jets$ [irreducible backg. Jets+ E_t^{mis} search]

Estimate this background from Z→μμ+jets

Di-Leptons & First Kinematic Measurements

...and if we are a bit lucky we might see spectacular signals already at the early days!

Look for generic signatures of cascade decays:

$$\begin{array}{c|c} & p & \\ \hline & \tilde{g} & \tilde{g} \\ \hline & q & \\ \hline \end{array}$$

 $Jets + E_t^{miss} + SFOS di-leptons$

 $Jets + E_t^{miss} + SS di-muons$

Extract:
$$M_{\ell\ell}^{max} = M(\tilde{\chi}_2^0) \sqrt{1 - \frac{M^2(\tilde{\ell}_R)}{M^2(\tilde{\chi}_2^0)}} \sqrt{1 - \frac{M^2(\tilde{\chi}_1^0)}{M^2(\tilde{\ell}_R)}}$$

from a fit to the "edge distribution".

"Low Mass M_h" in SUSY Decays

Depending on the SUSY parameter space the h→bb production is possible

- Separate cascade decay chain in two hemispheres and require two b's in one.
- 5σ Signal (M_h=115 GeV) already with~2fb⁻¹

Could be the first sign of a light higgs but b-tagging is crucial!

Summary

- CMS is on track for first collisions in 2008
 - Challenge: commissioning of machine and detectors of unprecedented complexity, technology and performance
- CMS(& ATLAS) will discover (or exclude) the Higgs by ~2010
 - Electro Weak Symmetry Breaking
 - Large phase space can already be excluded with only ~1fb⁻¹
- CMS(& ATLAS) will discover low energy SUSY (if it exists)
 - Could be easy; could also take more time and ingenuity before we can claim a discovery
 - First signals might emerge already in the first data (even at 10 TeV)
 - 1-2 TeV can be covered already with ~10fb⁻¹
- We will cover a new physics scale of 1-3 TeV
 - Many new physics models; Black hole, Extra Dimensions, Little Higgs, Split Susy, New Bosons, Technicolour, etc ...

Flavour/High-Q2 Interplay

A few (private) comments from an experimentalist ...

- Highest Priorities: "Early" Running:
 - understand detector, measure SM processes, (hopefully) establish a significant deviation from the SM - good things can come early!
- Today: Develop Search Strategies including Data Driven Background Methods and Trigger
 - Try to cover NP model phase space using "representative signature models" (e.g. CMSSM for "Dark Matter Searches"). Indeed, these training models are usually flavour blind!
- Important Question: Are we missing important NP signatures?
 - Is the flavour blindness of our traditional training models a real concern for discovery?

Flavour/High-Q2 Interplay

What comes after the discovery

ATLAS/CMS will, hopefully, observe NP at $\Lambda_{\rm NP} \lesssim TeV$ and...

- Measure new flavor parameters
- Teach us about how the NP flavor puzzle is (not) solved
- Probe NP at $\Lambda_{\rm NP} \gg TeV$
- Provide hints about the solution to the SM flavor puzzle

Point Take!

"Flavour" will play a crucial role in the interpretation of LHC discoveries.
Clearly, we need to include "Flavour" more into our High-Q2 search & interpretation strategies!

What would be the best approach for this?

Backup

Important Higgs Channels

- H→gg very difficult analysis with still quite unpredictable background
- ttH→ttbb at least 60 fb⁻¹ (many jets also with low p_T (<30 GeV) → bad reso/eff)
- other channels (mainly **associated production**) can help EXCLUDING Higgs (e.g. WH→WWW*→WlnIn)

	channel	XS	studied M _H
VBF	H→ ZZ* →4I	5-100 fb	130-500 GeV
	H→ WW*→InIn	0.5-2.5 pb	120-200 GeV
	⊢ H→ WW*→jjIn	200-900 fb	120-250 GeV
	H→ WW*→InIn	50-250 fb	120-200 GeV
	∟ H→t t	50-150 fb	115-145 GeV
	$H \rightarrow gg$	50-100 fb	115-150 GeV

☐ Analysis focusing on

- improvement of the reconstruction
- backgr. and syst. from data

Higgs Mass below 200 GeV

CMS: Higgs Discovery Potential

Bottom line: We will find the Higgs (or exclude it)!

Precision electroweak data tightly constrain the allowed region of m_h in the SM.

Yet, also other important models like mSUGRA are constrained by these data:

mSUGRA fit to flavour, electroweak and cosmology data:

 $mh(mSUGRA)=110^{+8}$ ₋₁₀ (exp)±3(theo) GeV

$H \rightarrow \gamma \gamma$

- □ Photon conversions are important, due to material balance in inner detectors
 - 42% in the barrel, 59.5% in the endcap
- Energy Resolution
 - 0.3% in the barrel, 1% in the endcap
- □ Associated production allows to improve s/b ratio. Both ATLAS and CMS are studying several channels
- "Advanced" analyses (NN, Likelihood, categories) allow to improve results with low statistics

Production Rates: 14 TeV vs. 10 TeV

Production Rate wrt 14 TeV

- W/Z ~70%
- ttbar ~50%
- Higgs (200) ~50%

Heavy Stable Charged Particles

Data Sample	Cross	HSCP in	HSCP in
	section (pb)	$ \eta < 2.4$ (%)	$ \eta < 0.9(\%)$
$\tilde{\tau}_1$ (156 GeV)	1.19	97.6	72.6
τ̃ ₁ (247 GeV)	0.097	97.5	70.9
KK tau (300 GeV)	0.020	84.7	40.9
g̃ (200 GeV)	2.2×10^{3}	89.7	47.4
§ (300 GeV)	100	91.7	50.0
§ (600 GeV)	5.00	93.7	55.5
ã (900 GeV)	0.46	92.6	57.7
§ (1200 GeV)	61×10^{-3}	91.4	53.9
g̃ (1500 GeV)	10×10^{-3}	90.4	55.8
\tilde{t}_1 (130 GeV)	1.11×10^{3}	87.8	43.1
\tilde{t}_1 (200 GeV)	1.77×10^{2}	90.9	47.3
<i>t</i> ₁ (300 GeV)	27.4	92.8	50.4
<i>t</i> ₁ (500 GeV)	1.27	95.3	54.7
<i>t</i> ₁ (800 GeV)	7.81×10^{-2}	96.9	61.9

Curtsey of A. De Roeck

New extended HCSP study

New Physics Discovery Potential (early days)

Model	Mass reach	Luminosity (fb ⁻¹)	Early Systematic Challenges
Contact Interaction	Λ < 2.8 TeV	0.01	Jet Eff., Energy Scale
Z'			Alignment
ALRM	M ~ 1 TeV	0.01	
SSM	M ~ 1 TeV	0.02	
LRM	M ~ 1 TeV	0.03	
E6, SO(10)	M ~ 1 TeV	0.03 - 0.1	
Excited Quark	M ~0.7 - 3.6 TeV	0.1	Jet Energy Scale
Axigluon or Colouron	M ~0.7 - 3.5 TeV	0.1	Jet Energy Scale
E6 diquarks	M ~0.7 – 4.0 TeV	0.1	Jet Energy Scale
Technirho	M ~0.7 - 2.4 TeV	0.1	Jet Energy Scale
ADD Virtual G _{KK}	M_{D} ~ 4.3 - 3 TeV, n = 3-6	0.1	Alignment
	$M_{D} \sim 5 - 4 \text{ TeV}, n = 3-6$	1	
ADD Direct G _{KK}	M _D ~ 1.5-1.0 TeV, n = 3-6	0.1	MET, Jet/photon Scale
SUSY	M ~1.5 - 1.8 TeV	1	MET, Jet Energy Scale,
Jet+MET+0 lepton	M ~0.5 TeV	0.01	Multi-Jet backgrounds,
Jet+MET+1 lepton	M ~0.5 TeV	0.1	Standard Model backgrounds
Jet+MET+2 leptons	M ~0.5 TeV	0.1	3
mUED	M ~0.3 TeV	0.01	ibid
	M ~ 0.6 TeV	1	
RS1			
di-jets	M _{G1} ~0.7- 0.8 TeV, c=0.1	0.1	Jet Energy Scale
di-muons	M _{G1} ~0.8- 2.3 TeV, c=0.01-0.1	1	Alignment

Contact Interactions in Angular Distributions

Angular distribution has much smaller systematic uncertainties than cross section vs. dijet mass

Effects emerge at high mass

Contact interaction is often

more isotropic than QCD

 $cos \theta^*$

CMS: Dijet Ratio Systematic Uncertainties

Absolute Jet Energy Scale

No effect on QCD dijet ratio: flat vs. dijet mass Causes 5% uncertainty in Λ

Relative Energy Scale

Energy scale in $|\eta|$ <0.5 vs. 0.5 < $|\eta|$ < 1 Estimate +/- 0.5 % is achievable in Barrel Changes ratio between +/-.01 and +/-.03

Resolution

No change to the ratio when changing resolution Systematics bounded by MC statistics: 0.02

Parton Distributions

CTEQ6.1 uncertainties Systematics on ratio less than 0.02