Rare Decays at LHCb

Mitesh Patel (CERN)

CERN Theory Institute LHC b Focus week

Wednesday 28th May 2008

Introduction

• New physics can give effective Hamiltonian, H, new operators O_i or modified Wilson coefficients C_i

$$A(M \rightarrow F) = \langle F | \mathcal{H}_{\mathsf{eff}} | M \rangle \qquad \qquad \mathcal{H}_{\mathsf{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\mathsf{ts}}^* V_{\mathsf{tb}} \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$

 Rare B decays give a number of opportunities to constrain these contributions:

		$_{ m magnitude}$	phase	helicity flip \mathcal{O}_i']
	$^{\rm b}$	$b \to s \gamma$	$a_{CP}(b \to s\gamma)$	$\Lambda_b o \Lambda \gamma$	
$\mathcal{O}_{7oldsymbol{\gamma}}$	Q,			$B \to (K^* \to K\pi)\ell^+\ell^-$	_
	\mathcal{U}_{γ}			$B \rightarrow (K^{**} \rightarrow K\pi\pi)\gamma$	From
	$^{\rm b}$	$b \to s \gamma$	$a_{CP}(b \to s \gamma)$	$\Lambda_b \to \Lambda \phi$	m G
$\mathcal{O}_{8\mathrm{g}}$		$B \to X_c$	$B \to K \phi$	$B o K^* \phi$	
	Que g				Hiller
	$^{\rm b}$	$b \rightarrow se^+e^-$	$A_{FB}(b \to s \ell^+ \ell^-)$	$B \to (K^* \to K\pi)\ell^+\ell^-$	
$\mathcal{O}_{9oldsymbol{\ell},10oldsymbol{\ell}}$					hep-p
	s				<u>h/0</u>
	$^{\mathrm{b}}$	$B_{d,s} \to \mu^+ \mu^-$	$B_{d,s} \to \tau^+ \tau^-$	$b \to s \tau^+ \tau^-$	h/0308180
$\mathcal{O}_{S,P}$					318
	s'				

$$B_s\!\!\to\!\!\mu\mu$$

$B_s \rightarrow \mu\mu$

SM

 \mathbf{W}^{\pm}

- B_s→μμ helicity suppressed
- Well predicted in SM:

- BR(B_s
$$\rightarrow \mu\mu$$
) = (3.35±0.32)×10⁻⁹ [1]

- Sensitive to (pseudo) scalar operators
 - MSSM: tan⁶ ®/M_A⁴ enhancement
 - NUHM: favours large tan β (~30)
- Current limits from Tevatron:
 - CDF BR < 4.7×10^{-8} 90% CL [2]
 - D0 BR < 7.5×10^{-8} 90% CL [3]

MSSM

H⁰/A⁰

[1] hep-ph/06040507v5

[2] arXiv:0712.1708v1 [hep-ex]

[3] arXiv:0705.300v1 [hep-ex]

- Searching for B_s→μμ with LHCb:
 - Large prodn x-secn for b's at high η , low p_T
 - → At $L=2x10^{32}$ cm²s⁻¹, 10^{12} b \overline{b} pairs in 10^{7} s
 - Trigger has μ p_T threshold >~1GeV
 - \rightarrow ~1.5kHz inclusive μ , di- μ
 - Small event size
 - → Can write this rate out, open analysis can retain max. efficiency
 - High precision magnetic spectrometer
 - \rightarrow B_s mass resolution ~20MeV (c.f. CMS ~40MeV, ATLAS ~80MeV)
 - Vertex detector very close to LHC beams
 - → Excellent vtx, impact parameter resolution

- Events classified according to geometrical likelihood, PID and B_s invariant mass:
 - Geometric likelihood:
 - B_s Lifetime
 - μ SIPS: Mu Impact Parameter Significance
 - DOCA: Distance of closest approach
 - B_s IP: B_s impact parameter to prim. vtx
 - Isolation: No. of good secondary vtx that can be made with μ candidates
 - PID:
 - Calibration muons (MIPs in calorimeter, J/ψ muons)
 - B_s Invariant Mass

Analysis:

- Signal description: B→hh (~200k events/2fb⁻¹)
- Background estimation from mass sidebands
- Normalisation: B⁺→J/ψK⁺ (2M events/2fb⁻¹)
- Dominant uncertainty on BR from relative B_s, B⁺ hadronisation fraction ~13%

$$BR = \frac{BR_n \cdot \varepsilon_n^{REC} \varepsilon_n^{SEL} \varepsilon_n^{TRIG}}{\varepsilon^{REC} \varepsilon^{SEL} \varepsilon^{TRIG}} \cdot \frac{f_n}{f_{Bs}} \frac{N}{N_n}$$

- Background:
 - Dominated by b→µ, b→µ,
 b→µ, b→c→µ also contributes
 - Mis-id (B→hh), insignificant
 - Dominant exclusive bkgrd B_c^+ →J/Ψμν, tiny cf. b→μ, b→μ
 - Drell-yan insignificant at these masses
- Total efficiency for all geometric likelihood values ~10%
- Taking events with GL>0.5, assuming SM BR, with 2fb⁻¹:
 - Signal ~30 events
 - Bkgrd ~83 events

With 0.1fb^{-1} can measure BR 9 (15)×10⁻⁹ at 3 (5) σ

With 0.5fb^{-1} can measure BR 5 (9)×10⁻⁹ at 3 (5) σ

$$B_d {\rightarrow} K^* \mu \mu$$

$B_d \rightarrow K^* \mu \mu$

BR measured at B-factories, in agreement with SM:

BR(B_d
$$\rightarrow$$
K* $\mu\mu$)= (1.22^{+0.38}_{-0.32})×10⁻⁶ [1]

- Decay described by three angles $(\theta_{l}, \phi, \theta_{K^{*}})$
- Angular distributions as function of q² gives sensitivity to NP contributions
- Forward-backward asymmetry A_{FB}
 in θ_I angle has received particular
 theoretical attention predicted in a
 number of different models

- B-factories each collected O(100) signal events
- CDF has ~35 signal events
- Given projected total datasets these experiments, a total of <1000 events might be observed at all facilities
- With L=2x10³² cm²s⁻¹, LHCb will observe this no. of events with ~0.25fb⁻¹ integrated luminosity

- Signal selection:
 - Total selection efficiency ~1%
 - \rightarrow 7200 signal events /2fb⁻¹ (~50% below m_{J/\text{Y}})
- Full A_{FB} spectrum of interest but zero-crossing point often computed:

$$- s_{SM}^0 = 4.39^{+0.38}_{-0.35} \text{ GeV}^2$$
 [1] (older value used in model \rightarrow)

Simple linear fit suggests precision:

	0.5 fb ⁻¹	2 fb ⁻¹	10 fb ⁻¹
$\sigma(s^0)$	0.8 GeV ²	0.5 GeV ²	0.3 GeV ²

Looking at extended beyond linear fit

$B_d \rightarrow K^* \mu \mu$ at LHCb

Background:

- $b \rightarrow \mu$, $b \rightarrow \mu$ dominant contribution, symmetric distribution in θ_I – scales A_{FB} observed
- $b \rightarrow \mu$, $b \rightarrow c \rightarrow \mu$ significant contribution, asymmetric θ_{μ} distribution – effect on A_{FB} depends on θ_{I} shape
- As for $B_s \rightarrow \mu\mu$, don't observe any significant background from µ mis-id
- Non-resonant $K\pi\mu\mu$ events not yet observed
- Bkgrd rejection dependent on B_d mass resoln: $\sigma(m_{Bd}) \sim 15 MeV$ (c.f. ATLAS 50MeV)
- B/S ~0.5

Analysis issues:

- In order to correct A_{FB} value measured, require knowledge relative angular efficiency:
 - p_T cuts on muons (in e.g. trigger), remove events with $\theta_1 \sim 0, \pi$
 - muon reconstruction requirements distort momentum spectrum

- Decays contain much more information than θ_{l} , A_{FB} distributions
- Fitting projections of θ_I, φ, θ_{K*} angular distributions:

$$\frac{d\Gamma'}{d\phi} = \frac{\Gamma'}{2\pi} \left(1 + \frac{1}{2} (1 - F_L) A_T^{(2)} \cos 2\phi + A_{Im} \sin 2\phi \right)$$

$$\frac{d\Gamma'}{d\theta_l} = \Gamma' \left(\frac{3}{4} F_L \sin^2 \theta_l + \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_l) + A_{\rm FB} \cos \theta_l \right) \sin \theta_l$$

$$\frac{d\Gamma'}{d\theta_K} = \frac{3\Gamma'}{4}\sin\theta_k \left(2F_L\cos^2\theta_K + (1 - F_L)\sin^2\theta_K\right)$$

 \rightarrow fraction of longitudinal polarization, F_L , and transverse asymmetry A_T^2

$B_d \rightarrow K^* \mu \mu$ at LHCb

Full angular fit also under investigation:

$$\frac{d^4\Gamma_{\overline{B}_d}}{dq^2 d\theta_l d\theta_K d\phi} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_K, \phi) \sin \theta_l \sin \theta_K$$

- Parameterised in terms of transversity amplitudes
 - $-A_0^{L,R}, A_\perp^{L,R}, A_\parallel^{L,R}, 6$ complex numbers
- Correlations give access to helicities
 - Probe chiral structure NP operators

- Once have enough events in each q² bin for fit to converge → better precision on A_{FB}, F_L, and A_T² (but require full acceptance correction)
- Can form any observable once have fitted all amplitudes new theoretically clean observables with good NP sensitivity sought!

$$B_s\!\!\to\!\! \varphi\gamma$$

B_d K* γ , $B_s \rightarrow \phi \gamma$

BR(B_d→X_sγ) measured by B-factories, rate in agreement with SM

$$\Gamma(B_q(\bar{B}_q) \to f^{CP}\gamma) \propto e^{-\Gamma_q t} \left(\cosh \frac{\Delta \Gamma_q t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_q t}{2} \pm \mathcal{C} \cos \Delta m_q t \mp \mathcal{S} \sin \Delta m_q t \right)$$

B-factories measured CP asymmetry A_{CP} in B_d K*(K_sπ⁰)γ :

$$A_{CP}(t) = \frac{\Gamma[B_q \to \phi \gamma] - \Gamma[B_q \to \phi \gamma]}{\Gamma[\bar{B}_q \to \phi \gamma] + \Gamma[B_q \to \phi \gamma]}$$
 In SM, C=0 (direct CPV) S=\sin 2\psi \sin \psi \text{V} \sin \phi \text{A}^\text{\sin} \text{2} \psi \sin \phi \text{V} \text{cosh} \text{\left} \frac{\text{A}^\text{\sin} \text{2} \psi \cos \phi \text{where } \psi \text{fraction of "wrong" polarization} \times \text{C=-0.03\pm 0.14, S=-0.19\pm 0.23} \text{[HFAG]}

- LHCb can perform analogous measurement in B_s→φγ
 - − As $\Delta\Gamma_s \neq 0$, B_s $\rightarrow \phi \gamma$ decay probes A^Δ as well as C and S

$B_s \rightarrow \phi \gamma$ at LHCb

- Signal Selection:
 - $E_T > 2.7 GeV$
 - Mass resoln ~90 MeV
 - Proper time resoln ~80 fs (not critical for measuring A[△])
 - Total Efficiency ~0.3%
 - Yield:
 - $B_s \rightarrow \phi \gamma$
 - 11k / 2fb⁻¹ with B/S<0.55
 - $B_d \rightarrow K^*(K^+\pi^-)\gamma$
 - 68k / 2fb⁻¹ with B/S~0.60

$B_s \rightarrow \phi \gamma$ at LHCb

- Analysis issues:
 - Acceptance function a(t) $(B_d \rightarrow K^* \gamma)$
 - $\sigma(t)$ as function of topology
- Precision on A_{CP} parameters with B_s→φγ decays from 0.5fb⁻¹
 - $-\sigma(A^{\triangle}) = 0.3$ (no tagging required)
 - $-\sigma(S, C) = 0.2$ (require tagging)

- With 2fb⁻¹:
 - $\quad \sigma(\mathsf{A}^{\triangle}) \quad = 0.22$
 - $-\sigma(S, C) = 0.11$

Conclusions

- Rare B decays in LHCb will find NP or constrain extensions of SM
- With the first data:
 - B_s→µµ excluded at SM value with 0.5fb⁻¹
 - − B_d → $K^*\mu\mu$ measure A_{FB} spectrum, $\sigma(s_0)$ ~0.8GeV² with 0.5fb⁻¹
- With 2fb⁻¹ integrated luminosity:
 - B_s→µµ evidence if SM BR (observation with 6fb⁻¹ data)
 - − B_d → K^* μμ measure A_{FB} spectrum, $\sigma(s_0) \sim 0.5 GeV^2$, new observables with more complex fits $(A^{(2)}_T, ...)$
 - − B_s → $\phi \gamma$ CP asymmetry A_{CP} → fraction of "wrong" polarization
- Host of other channels will be accessible:
 - Radiative : $\Lambda_b \rightarrow \Lambda \gamma$, $\Lambda_b \rightarrow \Lambda^* \gamma$, $B \rightarrow \rho^0 \gamma$, $B \rightarrow \omega \gamma$, $\mu \mu \gamma$
 - b \rightarrow sII: B⁺ \rightarrow K⁺II (R_K), B_S \rightarrow $\phi\mu\mu$
 - LFV : $B_a \rightarrow II'$
 - ...

Other Channels

- Preliminary study of B_s→ φμμ:
 - Expect ~1000 signal events from 2fb⁻¹ data with B/S<0.9 @ 90% CL
 - Factor 4 reduction in production rate B_s cf. B_d
 - − The ϕ does not tag the B → need flavour tagging, factor ~15 reduction → expect $\sqrt{60}$ worse resolution than B_d →K*μμ
 - Can make CP-averaged measurement of A_{FB} (if non-zero \Longrightarrow CPV)
- Study of b→d transition B_s→K*μμ also planned:
 - Again, factor 4 reduction in production rate B_s cf. B_d
 - Rate reduced by $|V_{td}/V_{ts}|^2 = 0.208^2 \sim 1/25$
 - Given these reductions, expect will have to work harder to reduce background
 - \rightarrow ~< 700 events/ 2fb⁻¹

"Robustness" of mis-id bkg estimation:

bb inclusive above GL = 0.2:

19 b → dimuon

3 other muons

2 muon + mis-id → single mis-id probability needs to increase a factor ~10 to be of the same order as di-muon bkgrd

Double mis-id:

- dominated by B→hh
- -~4 evts/fb⁻¹ → a factor ~50 less than dimuon
- Mis-id needs to increase by a factor ~7 to be of the same order as dimuon bkgrd

R_K in $B^+ \rightarrow K^+ II$

R_K theoretically well controlled in SM :

$$R_{\mathbf{X}} = \frac{\int\limits_{-\frac{4m_{\mu}^{2}}{q_{\max}^{2}}}^{\frac{ds}{ds}} \frac{d\Gamma(\mathbf{B} \to \mathbf{X} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-})}{ds}}{\int\limits_{-\frac{4m_{\mu}^{2}}{q_{\max}^{2}}}^{\frac{2}{ds}} \frac{ds}{ds}} \stackrel{\mathrm{SM}}{=} \left\{ \begin{array}{l} 1.000 \pm 0.001 \quad \mathbf{X} = \mathbf{K} \\ 0.991 \pm 0.002 \quad \mathbf{X} = \mathbf{K}^{*} \\ \text{[Hiller \& Krüger, PRD69 (2004) 074020]} \end{array} \right.$$

- Effect of extensions to SM can be O(10%) e.g. from neutral Higgs boson exchange
- Related to BR(B_s→μμ)
- LHCb sensitivity with B⁺→K⁺II has been investigated – can also be done with the K* decay

R_K in $B^+ \rightarrow K^+ II$ (cont'd)

• From 10 fb⁻¹ data :

$$-B_d \rightarrow eeK \sim 10k$$

- $-B_d \rightarrow \mu\mu K$ ~ 19k
- Gives $R_K = 1$ (fixed) ± 0.043
- Possible status with 10fb⁻¹ data :
 - − BR(B_s→ $\mu\mu$) ~ 3×10⁻⁹
 - $R_K \sim 1$ compatible with MSSM with small tan β
 - R_K ≠ 1 NP : right handed currents or broken lepton universality
 - BR(B_s $\rightarrow \mu\mu$) \neq 3×10⁻⁹
 - R_K ~ 1 as above
 - $R_{\kappa} = 1 + \varepsilon MFV$

B_d→K*μμ – non-resonant bkgrd

- Presently neglecting non-resonant background
- Limit can crudely be derived from BaBar data → expect ~2000 events/2fb⁻¹ (→ B/S=0.5±0.2)
- Has been suggested that, under certain kinematic conditions, these can be treated as signal [Grinstein, Pirjol, hep-ph/0505155]:

Region I: soft pion, energetic kaon

- Shifts zero of A_{FB} and larger theory errors
- Region II: energetic $K\pi$ pair
 - Can be treated as B \rightarrow X $\mu\mu$ and X \rightarrow K π
- Region III: soft kaon, energetic pion
 - Amplitude suppressed so very few events...

Defined by kinematics

- Presently neglecting non-resonant background
- Limit can crudely be derived from BaBar data → expect ~2000 events/2fb⁻¹ (→ B/S=0.5±0.2)
- Has been suggested that, under certain kinematic conditions, these can be treated as signal [Grinstein, Pirjol, hep-ph/0505155]:

- Region I: soft pion, energetic kaon
- Shifts zero of A_{FB} and larger theory errors
- Region II: energetic Kπ pair
 - Can be treated as B ightarrow X $\mu\mu$ and X ightarrow K π
- Region III: soft kaon, energetic pion
 - Amplitude suppressed so very few events...

Defined by kinematics

- Presently neglecting non-resonant background
- Limit can crudely be derived from BaBar data → expect ~2000 events/2fb⁻¹ (→ B/S=0.5±0.2)
- Has been suggested that, under certain kinematic conditions, these can be treated as signal [Grinstein, Pirjol, hep-ph/0505155]:

- Region I: soft pion, energetic kaon
 - Shifts zero of A_{FB} and larger theory errors
- Region II: energetic Kπ pair
 - Can be treated as B \to X $\mu\mu$ and X \to K π
- Region III: soft kaon, energetic pion
 - Amplitude suppressed so very few events...

Defined by kinematics

However, isolating region II has a large effect on the signal yield:

Have relaxed the K* mass cut for signal and NR events

• E.g. separating regions at E_{π} =600MeV : find 27% signal events and 44% NR events in region II

However, isolating region II has a large effect on the signal yield:

Have relaxed the K* mass cut for signal and NR events

• E.g. separating regions at E_{π} =600MeV : find 27% signal events and 44% NR events in region II

However, isolating region II has a large effect on the signal yield:

Have relaxed the K* mass cut for signal and NR events

- E.g. separating regions at E_{π} =600MeV : find 27% signal events and 44% NR events in region II
- Plan to measure $d\Gamma/dm_{\kappa_{\pi}}$