#### Rare Decays at LHCb Mitesh Patel (CERN) # CERN Theory Institute LHC b Focus week Wednesday 28th May 2008 #### Introduction • New physics can give effective Hamiltonian, H, new operators $O_i$ or modified Wilson coefficients $C_i$ $$A(M \rightarrow F) = \langle F | \mathcal{H}_{\mathsf{eff}} | M \rangle \qquad \qquad \mathcal{H}_{\mathsf{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\mathsf{ts}}^* V_{\mathsf{tb}} \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$ Rare B decays give a number of opportunities to constrain these contributions: | | | $_{ m magnitude}$ | phase | helicity flip $\mathcal{O}_i'$ | ] | |----------------------------------------------------|------------------------|---------------------------|---------------------------------|----------------------------------------------------|------------| | | $^{\rm b}$ | $b \to s \gamma$ | $a_{CP}(b \to s\gamma)$ | $\Lambda_b o \Lambda \gamma$ | | | $\mathcal{O}_{7oldsymbol{\gamma}}$ | Q, | | | $B \to (K^* \to K\pi)\ell^+\ell^-$ | _ | | | $\mathcal{U}_{\gamma}$ | | | $B \rightarrow (K^{**} \rightarrow K\pi\pi)\gamma$ | From | | | $^{\rm b}$ | $b \to s \gamma$ | $a_{CP}(b \to s \gamma)$ | $\Lambda_b \to \Lambda \phi$ | m G | | $\mathcal{O}_{8\mathrm{g}}$ | | $B \to X_c$ | $B \to K \phi$ | $B o K^* \phi$ | | | | <b>Que</b> g | | | | Hiller | | | $^{\rm b}$ | $b \rightarrow se^+e^-$ | $A_{FB}(b \to s \ell^+ \ell^-)$ | $B \to (K^* \to K\pi)\ell^+\ell^-$ | | | $\mathcal{O}_{9oldsymbol{\ell},10oldsymbol{\ell}}$ | | | | | hep-p | | | s | | | | <u>h/0</u> | | | $^{\mathrm{b}}$ | $B_{d,s} \to \mu^+ \mu^-$ | $B_{d,s} \to \tau^+ \tau^-$ | $b \to s \tau^+ \tau^-$ | h/0308180 | | $\mathcal{O}_{S,P}$ | | | | | 318 | | | s' | | | | | $$B_s\!\!\to\!\!\mu\mu$$ ## $B_s \rightarrow \mu\mu$ SM $\mathbf{W}^{\pm}$ - B<sub>s</sub>→μμ helicity suppressed - Well predicted in SM: - BR(B<sub>s</sub> $$\rightarrow \mu\mu$$ ) = (3.35±0.32)×10<sup>-9</sup> [1] - Sensitive to (pseudo) scalar operators - MSSM: tan<sup>6</sup> ®/M<sub>A</sub><sup>4</sup> enhancement - NUHM: favours large tan β (~30) - Current limits from Tevatron: - CDF BR < $4.7 \times 10^{-8}$ 90% CL [2] - D0 BR < $7.5 \times 10^{-8}$ 90% CL [3] MSSM H<sup>0</sup>/A<sup>0</sup> [1] hep-ph/06040507v5 [2] arXiv:0712.1708v1 [hep-ex] [3] arXiv:0705.300v1 [hep-ex] - Searching for B<sub>s</sub>→μμ with LHCb: - Large prodn x-secn for b's at high $\eta$ , low $p_T$ - → At $L=2x10^{32}$ cm<sup>2</sup>s<sup>-1</sup>, $10^{12}$ b $\overline{b}$ pairs in $10^{7}$ s - Trigger has μ p<sub>T</sub> threshold >~1GeV - $\rightarrow$ ~1.5kHz inclusive $\mu$ , di- $\mu$ - Small event size - → Can write this rate out, open analysis can retain max. efficiency - High precision magnetic spectrometer - $\rightarrow$ B<sub>s</sub> mass resolution ~20MeV (c.f. CMS ~40MeV, ATLAS ~80MeV) - Vertex detector very close to LHC beams - → Excellent vtx, impact parameter resolution - Events classified according to geometrical likelihood, PID and B<sub>s</sub> invariant mass: - Geometric likelihood: - B<sub>s</sub> Lifetime - μ SIPS: Mu Impact Parameter Significance - DOCA: Distance of closest approach - B<sub>s</sub> IP: B<sub>s</sub> impact parameter to prim. vtx - Isolation: No. of good secondary vtx that can be made with μ candidates - PID: - Calibration muons (MIPs in calorimeter, J/ψ muons) - B<sub>s</sub> Invariant Mass #### Analysis: - Signal description: B→hh (~200k events/2fb<sup>-1</sup>) - Background estimation from mass sidebands - Normalisation: B<sup>+</sup>→J/ψK<sup>+</sup> (2M events/2fb<sup>-1</sup>) - Dominant uncertainty on BR from relative B<sub>s</sub>, B<sup>+</sup> hadronisation fraction ~13% $$BR = \frac{BR_n \cdot \varepsilon_n^{REC} \varepsilon_n^{SEL} \varepsilon_n^{TRIG}}{\varepsilon^{REC} \varepsilon^{SEL} \varepsilon^{TRIG}} \cdot \frac{f_n}{f_{Bs}} \frac{N}{N_n}$$ - Background: - Dominated by b→µ, b→µ, b→µ, b→c→µ also contributes - Mis-id (B→hh), insignificant - Dominant exclusive bkgrd $B_c^+$ →J/Ψμν, tiny cf. b→μ, b→μ - Drell-yan insignificant at these masses - Total efficiency for all geometric likelihood values ~10% - Taking events with GL>0.5, assuming SM BR, with 2fb<sup>-1</sup>: - Signal ~30 events - Bkgrd ~83 events With $0.1 \text{fb}^{-1}$ can measure BR 9 (15)×10<sup>-9</sup> at 3 (5) $\sigma$ With $0.5 \text{fb}^{-1}$ can measure BR 5 (9)×10<sup>-9</sup> at 3 (5) $\sigma$ $$B_d {\rightarrow} K^* \mu \mu$$ ## $B_d \rightarrow K^* \mu \mu$ BR measured at B-factories, in agreement with SM: BR(B<sub>d</sub> $$\rightarrow$$ K\* $\mu\mu$ )= (1.22<sup>+0.38</sup><sub>-0.32</sub>)×10<sup>-6</sup> [1] - Decay described by three angles $(\theta_{l}, \phi, \theta_{K^{*}})$ - Angular distributions as function of q<sup>2</sup> gives sensitivity to NP contributions - Forward-backward asymmetry A<sub>FB</sub> in θ<sub>I</sub> angle has received particular theoretical attention predicted in a number of different models - B-factories each collected O(100) signal events - CDF has ~35 signal events - Given projected total datasets these experiments, a total of <1000 events might be observed at all facilities - With L=2x10<sup>32</sup> cm<sup>2</sup>s<sup>-1</sup>, LHCb will observe this no. of events with ~0.25fb<sup>-1</sup> integrated luminosity - Signal selection: - Total selection efficiency ~1% - $\rightarrow$ 7200 signal events /2fb<sup>-1</sup> (~50% below m<sub>J/\text{Y}</sub>) - Full A<sub>FB</sub> spectrum of interest but zero-crossing point often computed: $$- s_{SM}^0 = 4.39^{+0.38}_{-0.35} \text{ GeV}^2$$ [1] (older value used in model $\rightarrow$ ) Simple linear fit suggests precision: | | 0.5 fb <sup>-1</sup> | 2 fb <sup>-1</sup> | 10 fb <sup>-1</sup> | |---------------|----------------------|----------------------|----------------------| | $\sigma(s^0)$ | 0.8 GeV <sup>2</sup> | 0.5 GeV <sup>2</sup> | 0.3 GeV <sup>2</sup> | Looking at extended beyond linear fit ## $B_d \rightarrow K^* \mu \mu$ at LHCb #### Background: - $b \rightarrow \mu$ , $b \rightarrow \mu$ dominant contribution, symmetric distribution in $\theta_I$ – scales $A_{FB}$ observed - $b \rightarrow \mu$ , $b \rightarrow c \rightarrow \mu$ significant contribution, asymmetric $\theta_{\mu}$ distribution – effect on $A_{FB}$ depends on $\theta_{I}$ shape - As for $B_s \rightarrow \mu\mu$ , don't observe any significant background from µ mis-id - Non-resonant $K\pi\mu\mu$ events not yet observed - Bkgrd rejection dependent on B<sub>d</sub> mass resoln: $\sigma(m_{Bd}) \sim 15 MeV$ (c.f. ATLAS 50MeV) - B/S ~0.5 #### Analysis issues: - In order to correct A<sub>FB</sub> value measured, require knowledge relative angular efficiency: - $p_T$ cuts on muons (in e.g. trigger), remove events with $\theta_1 \sim 0, \pi$ - muon reconstruction requirements distort momentum spectrum - Decays contain much more information than $\theta_{l}$ , $A_{FB}$ distributions - Fitting projections of θ<sub>I</sub>, φ, θ<sub>K\*</sub> angular distributions: $$\frac{d\Gamma'}{d\phi} = \frac{\Gamma'}{2\pi} \left( 1 + \frac{1}{2} (1 - F_L) A_T^{(2)} \cos 2\phi + A_{Im} \sin 2\phi \right)$$ $$\frac{d\Gamma'}{d\theta_l} = \Gamma' \left( \frac{3}{4} F_L \sin^2 \theta_l + \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_l) + A_{\rm FB} \cos \theta_l \right) \sin \theta_l$$ $$\frac{d\Gamma'}{d\theta_K} = \frac{3\Gamma'}{4}\sin\theta_k \left(2F_L\cos^2\theta_K + (1 - F_L)\sin^2\theta_K\right)$$ $\rightarrow$ fraction of longitudinal polarization, $F_L$ , and transverse asymmetry $A_T^2$ ## $B_d \rightarrow K^* \mu \mu$ at LHCb Full angular fit also under investigation: $$\frac{d^4\Gamma_{\overline{B}_d}}{dq^2 d\theta_l d\theta_K d\phi} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_K, \phi) \sin \theta_l \sin \theta_K$$ - Parameterised in terms of transversity amplitudes - $-A_0^{L,R}, A_\perp^{L,R}, A_\parallel^{L,R}, 6$ complex numbers - Correlations give access to helicities - Probe chiral structure NP operators - Once have enough events in each q<sup>2</sup> bin for fit to converge → better precision on A<sub>FB</sub>, F<sub>L</sub>, and A<sub>T</sub><sup>2</sup> (but require full acceptance correction) - Can form any observable once have fitted all amplitudes new theoretically clean observables with good NP sensitivity sought! $$B_s\!\!\to\!\! \varphi\gamma$$ ## $B_d$ K\* $\gamma$ , $B_s \rightarrow \phi \gamma$ BR(B<sub>d</sub>→X<sub>s</sub>γ) measured by B-factories, rate in agreement with SM $$\Gamma(B_q(\bar{B}_q) \to f^{CP}\gamma) \propto e^{-\Gamma_q t} \left( \cosh \frac{\Delta \Gamma_q t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_q t}{2} \pm \mathcal{C} \cos \Delta m_q t \mp \mathcal{S} \sin \Delta m_q t \right)$$ B-factories measured CP asymmetry A<sub>CP</sub> in B<sub>d</sub> K\*(K<sub>s</sub>π<sup>0</sup>)γ : $$A_{CP}(t) = \frac{\Gamma[B_q \to \phi \gamma] - \Gamma[B_q \to \phi \gamma]}{\Gamma[\bar{B}_q \to \phi \gamma] + \Gamma[B_q \to \phi \gamma]}$$ In SM, C=0 (direct CPV) S=\sin 2\psi \sin \psi \text{V} \sin \phi \text{A}^\text{\sin} \text{2} \psi \sin \phi \text{V} \text{cosh} \text{\left} \frac{\text{A}^\text{\sin} \text{2} \psi \cos \phi \text{where } \psi \text{fraction of "wrong" polarization} \times \text{C=-0.03\pm 0.14, S=-0.19\pm 0.23} \text{[HFAG]} - LHCb can perform analogous measurement in B<sub>s</sub>→φγ - − As $\Delta\Gamma_s \neq 0$ , B<sub>s</sub> $\rightarrow \phi \gamma$ decay probes A<sup>Δ</sup> as well as C and S ## $B_s \rightarrow \phi \gamma$ at LHCb - Signal Selection: - $E_T > 2.7 GeV$ - Mass resoln ~90 MeV - Proper time resoln ~80 fs (not critical for measuring A<sup>△</sup>) - Total Efficiency ~0.3% - Yield: - $B_s \rightarrow \phi \gamma$ - 11k / 2fb<sup>-1</sup> with B/S<0.55 - $B_d \rightarrow K^*(K^+\pi^-)\gamma$ - 68k / 2fb<sup>-1</sup> with B/S~0.60 ## $B_s \rightarrow \phi \gamma$ at LHCb - Analysis issues: - Acceptance function a(t) $(B_d \rightarrow K^* \gamma)$ - $\sigma(t)$ as function of topology - Precision on A<sub>CP</sub> parameters with B<sub>s</sub>→φγ decays from 0.5fb<sup>-1</sup> - $-\sigma(A^{\triangle}) = 0.3$ (no tagging required) - $-\sigma(S, C) = 0.2$ (require tagging) - With 2fb<sup>-1</sup>: - $\quad \sigma(\mathsf{A}^{\triangle}) \quad = 0.22$ - $-\sigma(S, C) = 0.11$ #### Conclusions - Rare B decays in LHCb will find NP or constrain extensions of SM - With the first data: - B<sub>s</sub>→µµ excluded at SM value with 0.5fb<sup>-1</sup> - − $B_d$ → $K^*\mu\mu$ measure $A_{FB}$ spectrum, $\sigma(s_0)$ ~0.8GeV² with 0.5fb<sup>-1</sup> - With 2fb<sup>-1</sup> integrated luminosity: - B<sub>s</sub>→µµ evidence if SM BR (observation with 6fb<sup>-1</sup> data) - − $B_d$ → $K^*$ μμ measure $A_{FB}$ spectrum, $\sigma(s_0) \sim 0.5 GeV^2$ , new observables with more complex fits $(A^{(2)}_T, ...)$ - − $B_s$ → $\phi \gamma$ CP asymmetry $A_{CP}$ → fraction of "wrong" polarization - Host of other channels will be accessible: - Radiative : $\Lambda_b \rightarrow \Lambda \gamma$ , $\Lambda_b \rightarrow \Lambda^* \gamma$ , $B \rightarrow \rho^0 \gamma$ , $B \rightarrow \omega \gamma$ , $\mu \mu \gamma$ - b $\rightarrow$ sII: B<sup>+</sup> $\rightarrow$ K<sup>+</sup>II (R<sub>K</sub>), B<sub>S</sub> $\rightarrow$ $\phi\mu\mu$ - LFV : $B_a \rightarrow II'$ - ... #### Other Channels - Preliminary study of B<sub>s</sub>→ φμμ: - Expect ~1000 signal events from 2fb<sup>-1</sup> data with B/S<0.9 @ 90% CL</li> - Factor 4 reduction in production rate B<sub>s</sub> cf. B<sub>d</sub> - − The $\phi$ does not tag the B → need flavour tagging, factor ~15 reduction → expect $\sqrt{60}$ worse resolution than $B_d$ →K\*μμ - Can make CP-averaged measurement of $A_{FB}$ (if non-zero $\Longrightarrow$ CPV) - Study of b→d transition B<sub>s</sub>→K\*μμ also planned: - Again, factor 4 reduction in production rate B<sub>s</sub> cf. B<sub>d</sub> - Rate reduced by $|V_{td}/V_{ts}|^2 = 0.208^2 \sim 1/25$ - Given these reductions, expect will have to work harder to reduce background - $\rightarrow$ ~< 700 events/ 2fb<sup>-1</sup> "Robustness" of mis-id bkg estimation: bb inclusive above GL = 0.2: **19** b → dimuon 3 other muons 2 muon + mis-id → single mis-id probability needs to increase a factor ~10 to be of the same order as di-muon bkgrd Double mis-id: - dominated by B→hh - -~4 evts/fb<sup>-1</sup> → a factor ~50 less than dimuon - Mis-id needs to increase by a factor ~7 to be of the same order as dimuon bkgrd #### $R_K$ in $B^+ \rightarrow K^+ II$ R<sub>K</sub> theoretically well controlled in SM : $$R_{\mathbf{X}} = \frac{\int\limits_{-\frac{4m_{\mu}^{2}}{q_{\max}^{2}}}^{\frac{ds}{ds}} \frac{d\Gamma(\mathbf{B} \to \mathbf{X} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-})}{ds}}{\int\limits_{-\frac{4m_{\mu}^{2}}{q_{\max}^{2}}}^{\frac{2}{ds}} \frac{ds}{ds}} \stackrel{\mathrm{SM}}{=} \left\{ \begin{array}{l} 1.000 \pm 0.001 \quad \mathbf{X} = \mathbf{K} \\ 0.991 \pm 0.002 \quad \mathbf{X} = \mathbf{K}^{*} \\ \text{[Hiller \& Krüger, PRD69 (2004) 074020]} \end{array} \right.$$ - Effect of extensions to SM can be O(10%) e.g. from neutral Higgs boson exchange - Related to BR(B<sub>s</sub>→μμ) - LHCb sensitivity with B<sup>+</sup>→K<sup>+</sup>II has been investigated – can also be done with the K\* decay #### $R_K$ in $B^+ \rightarrow K^+ II$ (cont'd) • From 10 fb<sup>-1</sup> data : $$-B_d \rightarrow eeK \sim 10k$$ - $-B_d \rightarrow \mu\mu K$ ~ 19k - Gives $R_K = 1$ (fixed) $\pm 0.043$ - Possible status with 10fb<sup>-1</sup> data : - − BR(B<sub>s</sub>→ $\mu\mu$ ) ~ 3×10<sup>-9</sup> - $R_K \sim 1$ compatible with MSSM with small tan $\beta$ - R<sub>K</sub> ≠ 1 NP : right handed currents or broken lepton universality - BR(B<sub>s</sub> $\rightarrow \mu\mu$ ) $\neq$ 3×10<sup>-9</sup> - R<sub>K</sub> ~ 1 as above - $R_{\kappa} = 1 + \varepsilon MFV$ #### B<sub>d</sub>→K\*μμ – non-resonant bkgrd - Presently neglecting non-resonant background - Limit can crudely be derived from BaBar data → expect ~2000 events/2fb<sup>-1</sup> (→ B/S=0.5±0.2) - Has been suggested that, under certain kinematic conditions, these can be treated as signal [Grinstein, Pirjol, hep-ph/0505155]: Region I: soft pion, energetic kaon - Shifts zero of A<sub>FB</sub> and larger theory errors - Region II: energetic $K\pi$ pair - Can be treated as B $\rightarrow$ X $\mu\mu$ and X $\rightarrow$ K $\pi$ - Region III: soft kaon, energetic pion - Amplitude suppressed so very few events... Defined by kinematics - Presently neglecting non-resonant background - Limit can crudely be derived from BaBar data → expect ~2000 events/2fb<sup>-1</sup> (→ B/S=0.5±0.2) - Has been suggested that, under certain kinematic conditions, these can be treated as signal [Grinstein, Pirjol, hep-ph/0505155]: - Region I: soft pion, energetic kaon - Shifts zero of A<sub>FB</sub> and larger theory errors - Region II: energetic Kπ pair - Can be treated as B ightarrow X $\mu\mu$ and X ightarrow K $\pi$ - Region III: soft kaon, energetic pion - Amplitude suppressed so very few events... Defined by kinematics - Presently neglecting non-resonant background - Limit can crudely be derived from BaBar data → expect ~2000 events/2fb<sup>-1</sup> (→ B/S=0.5±0.2) - Has been suggested that, under certain kinematic conditions, these can be treated as signal [Grinstein, Pirjol, hep-ph/0505155]: - Region I: soft pion, energetic kaon - Shifts zero of A<sub>FB</sub> and larger theory errors - Region II: energetic Kπ pair - Can be treated as B $\to$ X $\mu\mu$ and X $\to$ K $\pi$ - Region III: soft kaon, energetic pion - Amplitude suppressed so very few events... Defined by kinematics However, isolating region II has a large effect on the signal yield: Have relaxed the K\* mass cut for signal and NR events • E.g. separating regions at $E_{\pi}$ =600MeV : find 27% signal events and 44% NR events in region II However, isolating region II has a large effect on the signal yield: Have relaxed the K\* mass cut for signal and NR events • E.g. separating regions at $E_{\pi}$ =600MeV : find 27% signal events and 44% NR events in region II However, isolating region II has a large effect on the signal yield: Have relaxed the K\* mass cut for signal and NR events - E.g. separating regions at $E_{\pi}$ =600MeV : find 27% signal events and 44% NR events in region II - Plan to measure $d\Gamma/dm_{\kappa_{\pi}}$