Studies of Semileptonic Rare B Decays at ATLAS and CMS

Cristina Adorisio

Università degli Studi della Calabria and INFN

- on behalf of ATLAS and CMS collaborations

Outline

- Introduction
- Semileptonic rare decays in ATLAS
 - o dimuon signature:

- o the trigger strategy
- o offline analysis
- Semileptonic rare decays in CMS: studies started, but not official yet
 - o see CMS general talk by Starodumov on Monday session
- Conclusions

Introduction

- $b \rightarrow s(d)l^+l^-$ FCNC transitions in SM
 - o forbidden at the tree level, at lowest order occur through one-loop penguin and box diagrams
 - branching ratios $\sim 10^{-6} \div 10^{-7}$

- They provide a test of the SM and indirect search for signals of physics beyond the SM
 - o differential cross-section sensitive to new physics
 - o forward-backward asymmetry
 - o dilepton invariant mass spectrum
 - o provide information on long-distance QCD effects
 - o one additional check to measure values of $|V_{ts}|$ and $|V_{td}|$ CKM matrix

ATLAS Trigger Schema

• LVL1

hardware-based, identifies
Regions of Interest (RoI) for
further processing

• LVL2

- o confirm LVL1 trigger
- precision muon chamber and inner detector measurements in LVL1 RoI

• <u>EF</u>

- o refine LVL2 selection using offline-like algorithms
- o full event, alignment and calibration data available

Trigger for Semimuonic Rare B Decays - I

- B-Physics is accounted for $5 \div 10\%$ of total trigger resources: it must be fast, efficient and selective
- Semileptonic decays: di-muon final state
- B-Trigger has two types of muon-based triggers

Topological triggers: based on two LVL1 muons confirmed at LVL2 (high luminosity period)

TrigDiMuon-based triggers where there is only one LVL1 muon and the second muon is found at the HLT stage (low luminosity period)

 Hadron part trigger: now specific for each channel, track searched in the same RoI(s)

Trigger for Semimuonic Rare B Decays - II

- LVL1 muons trigger efficiency vs. dimuon opening angle:
 - \circ μ_1 and μ_2 $p_T > 4$ GeV (circles)
 - \circ μ_1 and μ_2 $p_T > 6$ GeV (squares)
- ♦ Acceptance do not vanish in small opening angle region

 LVL2 TrigDiMuon-based trigger efficiency as a function of RoI size:

- \circ $\mu 1 p_T > 6 \text{GeV}$ and $\mu 2 p_T > 3 \text{GeV}$
- \circ $\mu 1 p_T > 4 GeV and <math>\mu 2 p_T > 2.5 GeV$

Wed. 28 May 2008

Red curve shows saturation of efficiency as $\Delta\Phi \cdot \Delta\eta \ge 0.65$

Trigger for Semimuonic Rare B Decays - III

- Impact of trigger cuts on $\Lambda_b \to \Lambda^0 \mu^+ \mu^-$: LVL1 muon cuts, $p_T > 0.5 \text{GeV}$ hadron cut and acceptance $|\eta| < 2.5$
 - o trigger cuts prefer higher dimuon invariant mass
 - \circ suppression of $|A_{FR}|$ in low q^2/M^2 region

B@LHC Focus Week: Rare B Decays

Offline Analysis - I

- $\bullet \quad B_d \to K^{0*} \mu^+ \mu^-, B_s \to \Phi \; \mu^+ \mu^- \; , \; B^+ \to K^+ \mu^+ \mu^-, \; B^+ \to K^{+*} \mu^+ \mu^-, \Lambda_b \to \Lambda^0 \mu^+ \mu^- \; , \; \Lambda_b \to \Lambda^0 \mu$
- Analysis variables:
 - o good dimuon vertex with $\chi^2/NDF < 3$
 - o dimuon mass in kinematical allowed window and J/ Ψ and $\Psi(2S)$ areas excluded $m_{\mu\mu} \in [m_{\Psi} \pm 3\sigma]$
 - o secondary hadron reconstruction with vertex $\chi^2/NDF < 2$, $p_T > 3GeV$ and mass in $m_h \pm 3\sigma$
 - o good B meson vertex with $\chi^2/NDF < 2$
 - o b-hadron mass in $m_B \pm 3\sigma$ and proper time>0.5ps

Decay Channel	Theo. Br.Ratio	Cross- Section	Events in 30 fb ⁻¹
$B_d \to K^{0*} \mu^+ \mu^-$	1.3.10-6	2.5 pb	2500
$B_s \rightarrow \Phi \ \mu^+ \mu^-$	~10-6	0.57 pb	900
$B^+ \rightarrow K^+ \mu^+ \mu^-$	3.4·10-7	2.0 pb	4000
$B^+ \to K^{+*} \mu^+ \mu^-$	~10-6	2.1 pb	2300
$\Lambda_b \to \Lambda^0 \mu^+ \mu^-$	2.0.10-6	1.2 pb	800

Number of expected events after analysis cuts

Offline Analysis - II

Offline analysis cuts do not introduce additional effects on dimuon invariant mass spectrum and $A_{\rm FB}$

Expected precisions

- ➤ Plot is from Belle hep-ex/0603018:
 - ✓ Solid and dashed lines are SM; dotted and dot-dashed lines are NP; black crosses are Belle measurements
 - ✓ Red crosses are ATLAS expectations, with statistical errors only (B_d decay)

Decay Channel (30 fb ⁻¹)	δΑ _{FB} (1-6)GeV
$B_d \rightarrow K^{0*} \mu^+ \mu^-$	4.8 %
$B_s \rightarrow \Phi \ \mu^+\mu^-$	6.0 %
$B^+ \rightarrow K^+ \mu^+ \mu^-$	3.0 %
$B^+ \rightarrow K^{+*} \mu^+ \mu^-$	5.2 %
$\Lambda_{\rm b} o \Lambda^0 \mu^+ \mu^-$	6.0 %

➡ Good sensitivity to measure forward-backward asymmetry in semileptonic rare decays

Conclusions

- LHC potential for semileptonic rare decay physics is enormous
- ATLAS and CMS will use this potential for precise measurements of quantities sensitive to New Physics
 - o after 3 years of data taking at L=(1÷3)·10³³cm⁻²s⁻¹ there will be enough statistics to find deviations from SM predictions and to set strong limits on New Physics beyond SM
 - will study methods to continue even at nominal luminosity (L \cong 10³⁴cm⁻²s⁻¹) the rare decay program thanks to final state muons