ATLAS Status Report

118th OPEN LHCC Session, 4th of June 2014

Monica D'Onofrio (University of Liverpool)

On behalf of the ATLAS Collaboration

Physics
Highlights:
many new
results!

IBL Insertion and ID cooling tests

Milestone Week 3: cosmics in ATLAS!

Recent Physics Highlights

Papers since last LHCC meetings

Finalizing Run 1 data analysis (7 and 8 TeV)

proton-proton collision data

proton-proton collision at √s =8 TeV

Since the last LHCC meeting:

- 25 new papers
- 27 CONF notes

	ATLAS detector					
	The monitoring and data quality assessment of the ATLAS liquid argon calorimeter					
	Operation and Performance of the ATLAS Semiconductor Tracker					
	Measurement of chi_c1 and chi_c2 production with √s = 7 TeV pp collisions at ATLAS					
	Observation of Boosted Z-→bb Production in Proton-Proton Collisions at √s = 8 TeV and Measurement of the Production Cross-Section					
	Muon Reconstruction Efficiency and Momentum Resolution of the ATLAS Experiment in Proton-Proton Collisions at √s = 7 TeV in 2010					
*	Search for supersymmetry at /s = 8 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector					
	Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data					
	Measurement of the low mass Drell-Yan differential cross section at √s = 7 TeV using the ATLAS detector					
	Measurement of the parity violating asymmetry parameter α_b and the helicity amplitudes for the decay $\Lambda B \to J/\psi \; \Lambda 0$ with the ATLAS detector					
*	Search for dark Matter in events with single Z and missing transverse Energy using pp collisions at √s = 8 TeV with the ATLAS detector					
*	Search for top quark decays $t \rightarrow qH$ with $H \rightarrow \gamma \gamma$ using the ATLAS detector					
*	Searches for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at /s = 8TeV with the ATLAS detector					
\star	Measurement of the 4l Cross Section at the Z Resonance and Determination of the Branching Fraction of $Z\rightarrow 4l$ in pp Collisions at $Js = 7$ and 8 TeV with ATLAS					

Measurement of the underlying event in jet events from 7 TeV proton-proton collisions with the ATLAS detector

Search for supersymmetry in events with four or more leptons in √s = 8 TeV pp collisions with the ATLAS detector

Light-quark and gluon jet discrimination in pp collisions at √s =7 TeV with the ATLAS detector

Search for High-Mass Dilepton Resonances in pp Collisions at √s = 8 TeV with the ATLAS Detector

Evidence of electroweak production of WWjj in pp collisions at sqrs{s}=8 TeV with the ATLAS detector

Jet energy measurement and its systematic uncertainty in proton-proton collisions at √s = 7 TeV with the ATLAS detector

Search for microscopic black holes and string balls in final states with leptons and jets with the ATLAS detector at √s = 8 TeV

Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 20.3 fb-1 of √s=8 TeV

Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at √s_{NN} = 2.76 TeV with the

Search for direct stop pair production in events with a Z boson, b-jets and missing transverse energy with the ATLAS detector using 21 fb-1 from

Search for direct top squark pair production in final states with two leptons in √s = 8 TeV pp collisions with the ATLAS detector

Measurement of event-plane correlations in Js_{NN} = 2.76 TeV lead-lead collisions with the ATLAS detector

EPJC EPJC

JHEP

PRD

PRL

PRD

JHEP

PRD

FP.IC

JINST JINST

JHEP

PLB

FP.IC

JHEP

EPJC JHEP

PRD PRD

JHEP

JHEP

PRL

EPJC

JHEP

PRC

Heavy Ions

- 10 new results released since last LHCC meeting!
 - Cover a variety of topics aiming to study quark gluon plasma using soft and hard probes (in p-Pb and Pb-Pb)
 - Presented at QuarkMatter 2014 Conference

May 2014

Charged hadron production in p+Pb collisions at $\int s_{NN} = -5.02 - TeV$ measured at high transverse momentum

Measurement of the production of neighbouring jets in lead-lead collisions at $\int s_{NN} = 2.76 \text{ TeV}$

Collective flow with higher-order cumulants in lead-lead collisions at Is_{NN}=2.76 TeV

Centrality, rapidity and pT dependence of isolated prompt photon production in Pb-Pb collisions at $\int s_{NN} = 2.76 \text{ TeV}$

Measurements of the nuclear modification factor for jets in Pb+Pb collisions at sqrt{NN}=2.76 TeV

Centrality and rapidity dependence of inclusive jet production in $\int s_{NN} = -5.02$ TeV proton—lead collisions

Measurement of W boson production and lepton charge asymmetry in Pb+Pb collisions at $\int s_{NN} = 2.76 \text{ TeV}$

Elucidating the event-shape fluctuations via flow correlations and jet tomography studies in 2.76 TeV Pb+Pb collisions

Measurement of the long-range pseudorapidity correlations and associated Fourier harmonics in $\int S_{NN} = 5.02$ TeV proton-lead collisions

Measurement of the Z-boson production in pPb collisions at √s_{NN}=5.02TeV

ATLAS-CONF-2014-029

ATLAS-CONF-2014-028

<u>ATLAS-CONF-2014-027</u>

ATLAS-CONF-2014-026

ATLAS-CONF-2014-025

ATLAS-CONF-2014-024

ATLAS-CONF-2014-023

<u>ATLAS-CONF-2014-022</u>

ATLAS-CONF-2014-021

ATLAS-CONF-2014-020

HI highlights: Hard Probes and jets

Jet production in p-p and Pb-Pb:

- Measure absolute jet suppression:
 R_{AA} (=nuclear modification factor)
 vs rapidity and in ranges of centrality
 - 0-10% Centr:
 R_{AA} = 0.47 (0.56) for p_T = 55 (355) GeV
 consistent with central-to-peripheral ratio

EWK Boson measurements → additional way to study partonic energy loss in HI collisions (standard candles).

► E.g.:
$$W$$
 ($\rightarrow e$, μ)

Evidence for Electroweak Production of W±W±jj

arXiv:1405.6241

 Key process to probe the nature of EWK symmetry breaking

• Use 8 TeV full dataset in $e\pm e\pm$, $e\pm \mu\pm$, and $\mu\pm \mu\pm$ final state (+2jets)

'Inclusive' and 'VBS' fiducial regions

Combined significance:

4.5 (3.6) σ in the inclusive (VBS) region

Fiducial cross section in VBS region:

$$\sigma^{\rm fid} = 1.3 \pm 0.4 ({\rm stat}) \pm 0.2 ({\rm syst}) \text{ fb}$$

SM: $0.95 \pm 0.06 \text{ fb}$

Set also limits on anomalous quartic gauge boson couplings (a4, a5)

Monica D'Onofrio, 118th Open LHCC Session 4/06/2014

Top production

 $\int L \, dt = 20.3 \, \text{fb}^{-1} \, \text{Vs} = 8 \, \text{TeV}$

3

3.5

Single top t-channel inclusive and fiducial cross section

Translate fiducial σ to total σ

ATLAS-CONF-2014-007

Summary of single top production

Also:

arXiv:1403.6293 Search for FCNC top \rightarrow Hq, H $\rightarrow \gamma \gamma$ BR < 0.79% and limits on tqH (q=u,c) coupling

ATLAS Preliminary

stat.

sys. stat.

Predicted fiducial cross-section:

aMC@NLO(2→3)+Herwig Powheg(2-3)+Pythia6

Powheg(2-3)+Pythia8 Powheg(2→2)+Pythia6

AcerMC+Pythia6 μ=172.5 GeV

2.5

AcerMC+Pythia6 μ=60 GeV

ATLAS result

1.5

Higgs highlights

- Shortly after last LHCC meeting: update on higgs couplings
 - Inclusion of fermion results (H to $\tau\tau$ and VH, H \rightarrow bb)

Fermionic: $\mu^{bb,\tau\tau} = 1.09 \pm 0.24 \text{ (stat)}^{+0.27}_{-0.21} \text{ (sys)}$

Total: $\mu = 1.30 \pm 0.12 \text{ (stat)}^{+0.14}_{-0.11} \text{ (sys)}.$

Coupling fits assuming only SM

$$\kappa_V = \kappa_W = \kappa_Z$$
 $\kappa_V = 1.15 \pm 0.08$ $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_g$ $\kappa_F = 0.99^{+0.17}_{-0.15}$.

- Direct access to top-Higgs Yukawa coupling
- Consider H→bb: single and dilepton channels, categorized in N jets, N b-jets.
- Use Neural Network based on several discriminating variables

E.g.: single lepton 6j, 4b

Constrain background in suitable Control Regions → help reducing systematic uncertainties

Signal strength assuming m_H=125 GeV

Centrality=Sum pT / Sum E (all jets and lepton)

Last Mass measurement (July 2013)

Measurement limited by systematic uncertainties on e/y energy scale

Channel	Mass value
$H \rightarrow \gamma \gamma$	$126.8 \pm 0.2 \text{ (stat)} \pm 0.7 \text{ (sys) GeV}$
H o 4l	$124.3^{+0.6}_{-0.5}$ (stat) $^{+0.5}_{-0.3}$ (sys) GeV
Combined	$125.5 \pm 0.2 \text{ (stat)} ^{+0.5}_{-0.6} \text{ (sys) GeV}$

 \blacktriangleright Since then: improvements in energy-scale calibrations for e , γ and μ

Total uncertainty on e energy scale: 0.03%-0.3% for $E^e_T \sim 40$ GeV Total uncertainty on γ energy scale: 0.2%-0.6% for $E^{\gamma}_{T} \sim 60$ GeV Total uncertainty on μ : from 0.04% for $\eta \sim 0$ to 0.2% for $|\eta| > 2.0$

Last Mass measurement (July 2013)

Measurement limited by systematic uncertainties on e/y energy scale

Channel	Mass value
$H \rightarrow \gamma \gamma$	$126.8 \pm 0.2 \text{ (stat)} \pm 0.7 \text{ (sys) GeV}$
$H \rightarrow 4l$	$124.3^{+0.6}_{-0.5}$ (stat) $^{+0.5}_{-0.3}$ (sys) GeV
Combined	$125.5 \pm 0.2 \text{ (stat)} ^{+0.5}_{-0.6} \text{ (sys) GeV}$

Mass measurement in H $\rightarrow \gamma \gamma$

- Unbinned likelihood fit with mH as parameter of interest
- 10 mutually orthogonal categories (converted/ unconverted γ , η of γ) with different S/B, optimized to minimize the expected uncertainty on the mass measurement
- Reduction by 10% of expected signal resolution
- Reduce systematics on $m_{\gamma\gamma}$ from 0.7 GeV (Summer 2013) to 0.24 GeV (now!)

Last Mass measurement (July 2013)

Measurement limited by systematic uncertainties on e/y energy scale

Channel	Mass value
$H \rightarrow \gamma \gamma$	$126.8 \pm 0.2 \text{ (stat)} \pm 0.7 \text{ (sys) GeV}$
$H \rightarrow 4l$	$124.3^{+0.6}_{-0.5}$ (stat) $^{+0.5}_{-0.3}$ (sys) GeV
Combined	$125.5 \pm 0.2 \text{ (stat)} ^{+0.5}_{-0.6} \text{ (sys) GeV}$

Mass measurement in $H\rightarrow 4l$

Factor of 2 to 10 reduction of uncertainties related to energy calibration

Improvements in analysis techniques

- Use new multivariate discriminant
- 2D fit (m4l,BDT) with 4 categories (4μ,4e,2μ2e,2e2μ)

Increase S/B

Reduction of the statistical uncertainties

Last Mass measurement (July 2013)

Measurement limited by systematic uncertainties on e/y energy scale

Channel	Mass value
$H \rightarrow \gamma \gamma$	$126.8 \pm 0.2 \text{ (stat)} \pm 0.7 \text{ (sys) GeV}$
$H \rightarrow 4l$	$124.3^{+0.6}_{-0.5}$ (stat) $^{+0.5}_{-0.3}$ (sys) GeV
Combined	$125.5 \pm 0.2 \text{ (stat)} \begin{array}{c} +0.5 \\ -0.6 \end{array} \text{ (sys) GeV}$

Combination

$$\Lambda(m_H) = \frac{L(m_H, \hat{\hat{\mu}}_{\gamma\gamma}(m_H), \hat{\hat{\mu}}_{4\ell}(m_H), \hat{\hat{\boldsymbol{\theta}}}(m_H))}{L(\hat{m}_H, \hat{\mu}_{\gamma\gamma}, \hat{\mu}_{4\ell}, \hat{\boldsymbol{\theta}})}$$

Use profile likelihood ratio defined in terms of m_H and treating $\mu_{\gamma\gamma}$ and μ_{4l} as independent nuisance parameters

Channel	Mass measurement (GeV)
$H o \gamma \gamma$	$125.98 \pm 0.42 \text{ (stat)} \pm 0.28 \text{ (sys)} = 125.98 \pm 0.50$
$H \rightarrow ZZ^* \rightarrow 4\ell$	$124.51 \pm 0.52 \text{ (stat)} \pm 0.04 \text{ (sys)} = 124.51 \pm 0.52$
Combined	$125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (sys)} = 125.36 \pm 0.41$

Considerable reduction of systematic uncertainties on individual measurements

$$\Delta m_H = 1.47 \pm 0.67 \text{ (stat)} \pm 0.28 \text{ (sys)} \text{ GeV} = 1.47 \pm 0.72 \text{ GeV}$$

Compatibility: 2.0σ (was 2.5σ) corresponding to a probability of 4.8%

Shown at LHCP this week for first time; paper to be submitted shortly

Beyond SM Higgs searches

- \rightarrow Search for resonant (X \rightarrow hh) and non-resonant Higgs pair production in $\gamma\gamma$ bb
 - X could be heavy Higgs in 2HD Models
 - Non resonant: SM hh production NLO xsect = 9.22 fb (includes interference between trilinear Higgs couplings and box diagrams)

95% CL upper limit on oxBR of non-resonant production:

Obs: 2.2pb

(Exp: $1.0^{+0.6}_{-0.3}$ pb)

Limit for narrow resonance:

0.8 - 3.5 pb as function of its mass

- Search in low/high γγ mass
 - Explore region between 65 and 600 GeV
 - > SM Higgs production treated as background
 - Model-independent limit at the 95% CL on the production cross-section x BR($\rightarrow \gamma\gamma$) in a fiducial volume

SUSY searches: strong production

Several new results on searches for SUSY strong production: gluinos, squarks including top squarks

arXiv:1404.2500

2 same sign leptons (e/mu) + (b-) jets (/ 3-leptons + (b-)jets).

Background estimate mostly data-driven

Several interpretations

→ gluino pair production

0 leptons, 2-6 jets +Missing $E_T \rightarrow$ several SR targeting many strong production scenarios.

Example: squark pair production

Background estimate from control regions.

g̃g production, g̃→ tt̄χ̃ , m(q̃) >> m(g̃), √s = 8 TeV

ATLAS

Preliminary

LHCP 2014

 $[L_{...} = 20.3 \text{ fb}^{-1}]$

Expected 2SS/3 leptons, 0 - ≥ 3 b-jets [L_{int} = 20.3 fb⁻¹]

Observed arXiv: 1404.2800

SUSY searches: top squarks

2-lepton (e/μ) + b-jet: targets different mass hierarchies.

Uses M_{T2} variable to suppress the background

arXiv:1403.4853

0 leptons + 4/5/6 jets + Missing E_T : sensitive to various scenarios

16

Shown TODAY for first time; paper to be submitted shortly

4/06/2014

SUSY Searches: Electroweak production

1405.5086

4-lepton (e, μ, τ) - many interpretations (R-parity violating and EWK scenarios).

Example of SR with 1τ

1403.4853

2-lepton (e,μ) - many interpretations. (a) Exclusion of chargino pair production decaying via W's (b)combined charginoneutralino exclusion in WZ final states

Searches in dilepton final states

Resonant dilepton production

ee, μμ

arXiv:1405.4123

Non resonant dilepton production

Use also the ll decay angle, $\cos\theta^*$

ATLAS-CONF-2014-030

Lower limits on:

Scale for Contact Interaction: Λ >26.3 TeV

Large Extra Dimension: Ms>6.1 TeV for n=3 ADD

Towards Run 2

IBL insertion and Pixel status

- ▶ IBL (new inner pixel layer being added during LS1) completely inserted on Wednesday May 7!
 - Smooth operations, followed by installation of N₂ lines and flushing in IBL sealed volume

In addition:

- Pixel detector reconnected and cooling restarted
 - All 82 Pixel loops operated successfully

On-going:

- IBL service connections
- Further extensive cooling trials in July for IBL, Pixel and SCT systems

M-weeks

Milestone weeks:

- get all sub detectors up and running for Run-2
- 6 milestone weeks foreseen until October 2014
- Since last LHCC meeting: two more M-weeks completed

M3 (just two weeks ago):

- Huge progress on all systems!
- Could run with combined system at 100+ kHz level-1 rate using random triggers
- Overnight Cosmic Trigger Run TRT Fast OR + RPC + MDT (HV nominal) and CSC (~side A HV nominal)

A busy ATLAS Control Room

M3 Participating Components and Runs

- Include BCM, TRT, CSC, MDT, TGC and RPC (new in M3!):
 - ▶ Tested with 100+ kHz level-1 rate
 - Sector 5 A RPC providing trigger

- Also include HLT (New in M3!):
 - For the first time in ATLAS partition since Run 1!

M3 Menu:

LVL1: latest Run 1 Physics menu

HLT: basic L1 streamers (e.g. L1_TRT)

Basic algorithms expected in M4

Cosmic Run with all the above systems participating

- Event Display and Monitoring working at Point1.
- Tier0 processing of the data streamlined
- Data Quality Web-displays produced automatically for incoming data

Cosmics through ATLAS again!

Further preparation for Run 2

Detector consolidation and repair work ongoing, e.g.

- LAr low voltage power supplies being re-installed on the detector after capacitor replacements done at the company (Wiener)
- Tile: replacement of LVPS and check of HV boards (235/256 drawers done)
- RPC leak chasing: more than half done
- MDT/RPC: new BME chambers installed

New functionalities in run-2:

- ▶ 1 crate of new L1Calo input processor MCMs installed & under test
- L1Topo trigger on schedule through production readiness review
- new CSC ROD commissioning to start in June, to go to 100 kHz L1 rate

Software and Analysis preparation:

- new Geant version (4.9.6) for simulation fully validated
- new reconstruction software based on "xAOD" in final validation stage (format readable by both ROOT and Athena)
- tuning of clustering for IBL layer ongoing
- major improvements to grid-related software on track (ProdSys2, Rucio)
- tutorials on new analysis model have started (and are fully booked!)

Major testing of new SW components and analysis model during the summer ("DC14")

Conclusions

- Many new results released in the last few months based on heavy ions and proton-proton collisions!
 - Emphasis on finalising Run-1 papers.
- > Re-analysis of 2011 and 2012 data using improved energy scale calibration for e , γ and μ led to a new precision measurement of the Higgs mass
 - Improves systematic uncertainties on individual channel measurements:
 - ▶ H $\rightarrow \gamma \gamma$: from 700 MeV to 280 MeV; H $\rightarrow 4$ l: from +500/-300 MeV to 40 MeV
 - Detailed groundwork opens door to further precision measurements
- Preparations for Run-2 continue to progress well
 - ▶ IBL successfully inserted into ATLAS
 - Pixel reconnected and testing in progress, much other work across many detectors well advanced
 - Cosmic rays recorded again during the last M-week (M3), with high-level trigger and several detectors included
- Upgrade work on Phase-1 and Phase-2 ongoing, as reported yesterday by P. Allport in the upgrade session

Back-up

B-Physics highlights: charmonium

New B-physics results since March LHCC:

Measurement of x_{c1} and x_{c2} production ($\sqrt{s} = 7\text{TeV}$)

Measurement of the parity violating asymmetry parameter α_b and the helicity amplitudes for the decay $\Lambda_b{}^0 \rightarrow J/\psi \ \Lambda^0 \ (\sqrt{s} = 7\text{TeV})$

arXiv:1404.7035 arXiv:1404.1071

- Study of heavy quarkonium production → unique insight into dynamics of strong interaction.
 - Prompt and non-prompt production crosssections for the χ_{c1} and χ_{c2} charmonium states where χ_c are reconstructed through the radiative decay χ_c → J/ψ(→μμ)+γ

Fraction of χ_c produced in B-hadrons measured BR(B $^{\pm} \rightarrow \chi_c$ K $^{\pm}$)=4.9 \pm 0.9(stat) \pm 0.6(syst) x 10-4

Monica D'Onofrio, 118th Open LHCC Session

4/06/2014

Other SM highlights

- More and more precision measurements but also study challenging or rare final states with 7 and 8 TeV data:
 - e.g. Z boson

Consistent with SM predictions

$t \rightarrow qH, H \rightarrow \gamma \gamma$

Search for top pair production assuming:

- one top in Wb (with W→jj or →lv)
- one top in Hq, H $\rightarrow \gamma \gamma$

Limits on tqH coupling assuming equal sensitivity to q=u and q=c

$$\sqrt{\lambda_{tcH}^2 + \lambda_{tuH}^2} < 0.17$$

ttbar+Higgs (II)

Before/After fit

Fitted values of most relevant nuicance parameters

95% CL upper limits on σ (ttbarH)

Details on Higgs boson mass measurement

Systematic	Uncertainty on m_H (MeV)
LAr syst on material before presampler (barrel)	70
LAr syst on material after presampler (barrel)	20
LAr electronics non-linearity (layer 2)	60
LAr electronics non-linearity (layer 1)	30
LAr layer calibration (barrel)	50
Lateral shower shape (conv)	50
Lateral shower shape (unconv)	40
Presampler energy scale (barrel)	20
ID material model ($ \eta < 1.1$)	50
$H \rightarrow \gamma \gamma$ background model (unconv rest low p_{Tt})	40
$Z \rightarrow ee$ calibration	50
Primary vertex effect on mass scale	20
Muon momentum scale	10
Remaining systematic uncertainties	70
Total	180

Details on Higgs mass measurement

Details on Higgs boson mass measurement

Difference, Δi, between the mass measured in a given γγ sub-sample and the combined γγ mass, using three different alternative categorizations to define the sub-samples. The top three points show a categorization based on the photon conversion status: UU is the sub-sample with both photons unconverted, UC the sub-sample with one converted and one unconverted photon, CC the sub-sample with two converted photons. The middle three points show a categorization based on the number of reconstructed primary vertices (NP V) in the event. The bottom three points show a categorization based on the photon impact points on the calorimeter: BB is the sub-sample with both photons detected in the barrel calorimeter, BE the sub-sample with one photon in the barrel calorimeter and one photon in the end-cap calorimeter and EE the sub-sample with both photons in the end-cap calorimeter.

 $H \rightarrow \gamma \gamma$

4/06/2014

 Δ_{i} [GeV]

Details on Higgs boson mass measurement

Pulls and impact on mH(hat) for the principal constrained nuisance parameters in the $H \rightarrow \gamma\gamma$ and $H\rightarrow 4l$ channels. The fitted value and $\pm 1\sigma$ uncertainties are shown for each parameter by the points and error bars (lower scale). The relative change in mH(hat) as a result of varying each parameter by its fitted uncertainty (upper scale) is shown in yellow. Parameters are selected and ordered according to their impact on mH(hat).

W' searches

Other exotic searches highlights

Mono-Z production: window to Dark Matter

Microscopic Black-holes: gravity

In high pT leptons and jets final state events

For 6 extra dimensions, mass thresholds of **4.8-6.2 TeV** excluded at 95%CL, depending on the fundamental gravity scale and model assumptions.

SUSY searches: top squarks

SUSY searches: top squarks

arXiv:1403.5222

 $Z(l^+l^-)$ + b-jets + Missing E_T : targets heavier stop (stop2), as window for difficult regions (stop mass close to top mass).

SUSY Searches: Weak production summary

M-weeks

	M1	M2	МЗ	M4	M5	М6	
	Feb 17- Feb 23	Mar 31- Apr 4	May19- May 23	Jul 7- Jul 11	Sep 8- Sep 12	Oct 13- Oct 17	Cosmic Run Nov 24 th - Dec 5 th
PIX				X 2			¹ TDAQ integration, using events simulated at ROD ² test with frontend, detector cold
IBL				(1	X ²		¹ TDAQ integration, using events simulated at ROD ² test with frontend, detector cold
SCT			_	k			detector cold
TRT LAR		X	Λ				All information in P1 Twiki: https://atlasop.cern.ch/twiki/bin/view/Main/Run2Preparation
TIL			A	X			• M4:
MBTS				х			Calorimeters, PIX, SCT, IBL
L1Calo	X ¹			X²	Х3	X ⁴	¹ Readout only. ² Full legacy triggering with TIL + LAR ³ CMX triggering both CP/JEP systems, L1Topo Readout Commissioned. ⁴ L1Topo Commissioned fully in trigger system. Possibly TGC trigger
CSC	X ¹				X ²	X^2	¹ Old RODs, side A only ² New ROD Commissioning
MDT	Х		1 /				
RPC		X ¹	X1				¹ TDAQ integration. HV for ~ 1 sector
TGC	X1		\ /	\mathbf{V}			¹ no operating gas until detector closed
BCM		Х	\mathbf{V}	\mathcal{M}			M3: TRT and RPC Cosmic Trigger
ALFA			V	V	Х		LAr moved to M4 (PS refurbishment)
LUCID						Х	Validation of M2 sub-systems
Lumi					х		HLT chain

Towards Run 2: DC14

- Technical and Physics improvements in offline areas being tested during a data-challenge in 2014 (DC14).
- The goal is to get ready for Run-2 analyses and engage a large fraction of the collaboration in the preparation:
- 500 M of MC events with the run-1 conditions have been simulated.
- Software has been migrated to the new ROOT-readable Event Data Model (xAOD) and the reconstruction is now about two times faster than run-1 release, thanks to the migration from CLHEP to Eigen libraries, (auto-)vectorization and careful rewriting and optionization of the code.

Next steps are:

- Reconstruction of the MC with new software and run-1 conditions and reprocessing of 25% of the 2012 data.
- Test of the new analysis model by the Combined Performance groups and selected physics analyses.
- Production of MC at 13 TeV and run-2 conditions