FTS / GFAL2 / Davix
Update

Alejandro Alvarez Ayllon on behalf of the FTS and DMC development teams

DAVIX

- Version 0.4.0 just released
- Small 3" party copy improvements
« S3 new functionalities
« Improved writing support

DAV vs XROOTD (Stats)

f
\
u

||

(*) DPM on LAN

CE/RW
_/

DAV vs XROOTD (IO)

WALL time [s] for DPM Root Read 100% TTC

166.85

170.49

10518

10726

112.17

1072

700 MiB ROOT file
100% event reads
30MiB cache

FTS3

- Running smoothly, with relatively minor
hiccups

« Working to make it even smoother and easier to
use

- Experimental features
« S3 and Dropbox support
« Deletion operations

- Future features

« GridFTP bulk copies (pipelining)
- Almost ready on gfal2

FTS3 - Deletions

- We got some performance numbers!

« Wall time from fts-delete until fts-transfer-status
returns FINISHED

- Tested on a remote DPM node
« Credits to Anna lutalova

FTS3 - Deletions

Perfomance plot for 100 files deletion

using srm, gsiftp, xroot, http/webdav

0 5 10 15 20 25
19.6358502865
W srm
18.4551553249 = gsiftp
W xroot
httpfwebdav
19.4777688026
19.5628412247
time in seconds
Perfomance plot for 1000 files deletion
using srm, gsiftp, xroot, http/webdav
103.4783750374
Wsm
86.0891215801 ® gsiftp
B xroot
99.7731270791 http/webdav
71.16092062
0 20 40 60 80 100 120

time in seconds

FTS3 - Deletions

Perfomance plot for 5000 files deletion

using srm, gsiftp, xroot, http/webdav

436.8328103223
Ws=rm
367.0853486353 B gsiftp
B ¥root
391.773315902 httpiwebday
294.3492109775
0 50 100 150 200 250 300 350 400 450 S00

time in seconds

FTS3 - Deletions

- SRM bulk deletion makes a big difference

- To be fair, HTTP Is doing twice the work
« STAT + DELETE each time, sequentially
- To avoid unlinking a dir, or “rmdir-ing” a file
« 2N operations!
« Can implement a bulk operation with no stat
- May unlink directories!!!

- HTTP DELETE could support pipelining
« Needs quite a bit of work

FTS3 - Deletions

For < O(100) files any protocol would do

For larger sets, SRM clearly wins
For the moment?

Functionally tested every night

Need to run the battery against
Different storage implementations
Different protocols
Under constant load

Protocol summary

GFAL2 (hence, FTS3) supports

srm, xrootd, gsiftp, http/dav, s3, rfio, dcap, file, Ifc
/O performance

http and xrootd perform similarly
Third party copy support

xrootd, gsiftp, http/dav (DPM and dCache partially)
Bulk copies

xrootd*, gsiftp
Bulk deletions

srm, which performs best on deletions because of
this
http seems to have room for improvement

Protocol summary

- Checksums
« gfal2-util support
- gfal-sum <file> <type>
- gfal-copy with -K
« Checksum natively supported
« GndFTP, HTTP, XROOTD

« On-the-fly fallback for the rest

« Not all storages, nor all protocols, supports all
checksum algorithms

- adler32 seems to be the intersection?

Friendly reminder

- LCG-UTIL now is fully deprecated

« Packages maintained in EL5 and 6
« Will not be in EL7

- Please, use GFALZ2!
- Report bugs, anything you need, feel missing...

- Points of contact
« http://dmc.web.cern.ch/
« dmc-support@cern.ch

Questions?

