

CLIC accelerator development and now technology transfer

CABOTO meeting, 24 September 2014

The CLIC project is developing the technology to make possible a TeV-range electron-positron linear collider.

One of the key objectives of the CLIC study has been to develop 100 MV/m accelerating structures along with the corresponding high-power, around 50 MW, rf systems.

Gradients in excess of 100 MV/m, are now routinely achieved.

We are actively seeking to apply our advances to other applications.

CLIC accelerating structure

Physics at LC from 250 GeV to 3000 GeV

Process

squarks

sleptons

 $W_L W_L$

Z'

 q^*

- Physics case for the Linear Collider:
 - Higgs physics (SM and non-SM)
 - Тор
 - **SUSY**
 - **Higgs strong interactions**
 - New Z' sector
 - Contact interactions
 - Extra dimensions
 - AOP (any other physics) ...

Specific challenges for CLIC studies:

- Need to address Higgs-studies, including gains for measurements at higher energies
- Reach for various "new physics" (list above) options; comparative studies with HiLumi LHC and proton-proton at higher energies (FCC).

New particle	LHC (14 TeV)	HL-LHC	CLIC3
squarks [TeV]	2.5	3	≲1.5
sleptons [TeV]	0.3	-	$\lesssim 1.5$
Z' (SM couplings) [TeV]	5	7	20
2 extra dims M_D [TeV]	9	12	20-30
TGC (95%) ($\lambda_{\gamma \text{ coupling}}$)	0.001	0.0006	0.0001
μ contact scale [TeV]	15	-	60
Higgs composite scale [TeV]	5–7	9–12	70

CERN E

European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire

CLIC near CERN

œ

Legend

CERN existing LHC Potential underground siting :

CLIC 500 Gev CLIC 1.5 TeV CLIC 3 TeV

Jura Mountains

Tunnel implementations (laser straight)

Lake Geneva

Geneva

Central MDI & Interaction Region

the adverter

High gradient – compact and potentially cheaper

State-of-the acceleration: Normal conducting: 28 MV/m SwissFEL 35 MV/m SACLA Superconducting: 24 MV/m European XFEL 31.5 MV/m ILC

Our goals:

100 MV/m CLIC 60-80 MV/m compact XFELs 50 MV/m low-β proton therapy linacs

CABOTO meeting, 24 September 2014

What is the main physical limitation? Vacuum breakdown

- An accelerating gradient of 100 MV/m corresponds to around 250 MV/m peak surface electric field.
- The high field leads to 'classic' vacuum breakdown. Field emission, neutral copper emission, plasma formation, kA currents, collapse of fields. Beam is kicked, luminosity or brightness lost.

Surface electric field concentration on the beam-aperture irises

CABOTO meeting, 24 September 2014

Operating frequency	12 GHz
Accelerating gradient	100 MV/m
Peak surface electric field	250 MV/m
Pulse length	200 ns
Repetition rate	50 Hz
Input power	50 MW
Breakdown rate	<10 ⁻⁷ BD/pulse/m

CABOTO meeting, 24 September 2014

CLIC test structures; fabrication and test T18 →TD18→T24→TD24→TD24R05

1. T18_Disk_#2

undamped

2. TD18_Disk_#2

damped

5. TD24R05 under test now

CLIC accelerating structure

Micron-precision turning and milling.

beam aperture, 25 cm long

CABOTO meeting, 24 September 2014

Diffusion Bonding of T18_vg2.4_DISC

Stacking disks

Temperature treatment for high-gradient developed by NLC/JLC

CABOTO meeting, 24 September 2014

Find the bonding plane!

Evolution of machining capability

CABOTO meeting, 24 September 2014

High – gradient testing infrastructure, klystrons

50 MW 1.5 μs

Toshiba 6 MW, 5 μs

Xbox1

CTF3 klystron gallery

R-001

CTF2

Xbox-1 Layout

Clockwise from top-left:

- Modulator/klystron (50MW, 1.5us pulse)
- Pulse compressor (250ns, ratio 2.8)
- DUT + connections
- Acc. structure (TD26CC)

Gallery Bunker

 Diode testing has started to commission modulator

Xbox3. 3D layout/integration almost finished

Accelerating structure performance summary

CABOTO meeting, 24 September 2014

CLIC Collaboration

29 Countries – over 70 Institutes

Outreach

Our development goals have basically been achieved – we now need to consolidate them, reduce cost, increase industrial supplier base etc. – while we wait for the LHC to clarify the physics case for our facility.

One of the most productive ways of achieving those goals is through promoting the use of our technology in other projects.

We have identified some potential applications:

The kind of **projects** we have identified which potentially benefit from high-gradient technology include:

- FELs
- Compton sources
- Medical linacs
- Imaging scanners
- Pulsed neutron sources

There are also accelerator **components** such as:

- Phase linearizing cavities
- Deflectors
- Rf guns

High-gradient medical accelerator

Objective – highest possible accelerating gradient for proton and ion acceleration by applying CLIC technology.

Target application is TERA's TULIP project.

Collaboration between CLIC and TERA.

Prototype structure and experimental electronics funded by CERN KT. knowledge transfer fund (and also the office for CERN medical applications).

A single room protontherapy facility has been designed by TERA Foundation at CERN in collaboration with the CLIC group.

A linac based proton therapy facility

Couplers design

Thermal Test at Bodycote

FERMI@Elettra: present layout and energy upgrade

N.B. The new layout could also provide two electron beams at the same time (@25 Hz) with different energies

Shanghai Photon Science Center at SINAP

AXXS Design Project Presentation to CLIC FEL Collaboration

18 September 2014

Mark Boland Australian Synchrotron

Horizon2020 application for X-band XFEL

LIST OF PARTICIPANTS

Research and Innovation actions Innovation actions

proposal full title	X-band technology for FELs	
proposal acronym	XbFEL	
type of funding scheme	H2020; Funding scheme RIA: Research and Innovation actions – innovation actions; proposal ID: SEP-210171536	
work programme topic addressed	Topic: INFRADEV-1-2014: CALL IDENTIFIER H2020-INFRADEV-1- 2014-1	
name of the coordinating person	Gerardo d'Auria Project leader X-band systems for FERMI@Elettra project, at Elettra - Sincrotrone Trieste S.C.p.A.	

Participant No	Participant organisation name	Short name	Country
1 (Coordinator)	Elettra – Sincrotrone Trieste S.C.p.A.	ST	Italy
2	CERN - European Organization for Nuclear Research	CERN	Switzerland
3	Uniwersytet Jagiellonski	UJ	Poland
4	Science and Technology Facilities Council	STFC	United Kingdom
5	Shanghai Institute of Applied Physics, Chinese Academy of Sciences	SINAP	China
6	VDL ETG Technology & Development B.V.	VDL	Netherlands
7	Universitetet i Oslo	OSLO	Norway
8	Institute of Accelerating Systems and Applications	IASA	Greece
9	Uppsala Universitet	UU	Sweden
10	Australian Synchrotron	ASLS	Australia
11	Ankara University Institute of Accelerator Technology	AU-IAT	Turkey
12	Lancaster University	ULANC	United Kingdom

Conclusions

CLIC-developed X-band and high-gradient technology have enabled significant increases in accelerator performance.

There is the real possibility of seeing the technology implemented in projects in the near future, which we hope will launch a virtuous circle of further development, lower cost and further use.