

GStat: Monitor EGEE/LCG Compatible Information Systems

Operations Automation Team kickoff EGEE-III transition meeting, CERN May 6, 2008

www.eu-egee.org

- GStat Overview
- Issues of Current GStat
- Visions of GStat 2.0
- GStat 2.0 Architecture Overview
 - Core (Topology Database)
 - Validation (Information Content Testing)
 - Monitoring
 - Visualization

GStat Overview

- Monitor EGEE/LCG compatible Information Systems
- Primary goals:
 - detect faults in the information published by Information System
 - verify the validity of resource information with Glue Schema
 - display useful data from the Information System
- Provide rich features: info. testing and monitoring
 - http://goc.grid.sinica.edu.tw/gstat/filter_help.html
 - http://goc.grid.sinica.edu.tw/gstat/
- User groups:
 - Site Admins
 - Operations (CIC, ROC, OCC)

Issues of Current GStat

- GStat is not designed in modular way
 - Not easy to reuse in other application scenarios
 - Not easy to maintain, not easy to test functionality independently
 - Not easy to make people they would like to contribute the development work independently
- Display the results on the same page
 - Not easy to browse
 - Not always clear what you are looking at
- Low performance problem

Visions of GStat 2.0

- Provide a complete monitoring on Information System
- Check health of Information System at each site
- Try to fulfill the needs from different user groups
- Provide three main functionalities:
 - Visualization of information in Information System
 - Information System Monitoring
 - Information Content Testing
- Make GStat easy
 - Make a clear separation between these three tasks
 - Take a modular approach where different parts can be re-used where necessary
 - Enable GStat to be integrated into and used by many other operational tools easily

GStat 2.0 Architecture Overview

Core: Topology Database

Enabling Grids for E-science

- It provides a skeleton framework for other tasks, such as visualization and monitoring
- Periodically (hourly), a top-level BDII is queried
- The snapshot of information system is stored in a relational database (sqlite)
- The topology database is created by
 - extracting the site and service entities
 - adding them to the topology database tables in the same sqlite database
- It presents topology of the Grid infrastructure
- For EGEE production system, addition queries are made to GOCDB and to SAM, in order to reduce the ambiguity between non-existence and not-published information

Validation (Information Content Testing)

Enabling Grids for E-sciencE

- Information Content Checking
- The testing results will be placed in an errors table ready for visualization
- We need to significantly improve the approach and coverage of the information system testing

Monitoring

- A monitoring configuration script is used to query the topology database to fine the list of services to monitor
- The script then configures Nagios
- The Nagios sensors monitor various aspects of the information system
- The Nagios graph capabilities complement for visualization
- A number of sensors have been created for Nagios to monitor a number of metrics
- The metrics available are described in
 - http://goc.grid.sinica.edu.tw/gocwiki/GSMonitoringMetrics

Visualization

- Use topology database to generate the main structure for visualization
- The source of information to visualize:
 - The results of Information content testing
 - Nagios monitoring data and graphs
- The visualization framework makes a clean separate between data gathering and data visualization
- Need to provide different views for different user groups according their requirements
- Need to be In charge of real operational use cases
- The views available are described in:
 - http://goc.grid.sinica.edu.tw/gocwiki/GSRequirements

URLs for More Information

Enabling Grids for E-sciencE

- All pages can be found from the index page
 - http://goc.grid.sinica.edu.tw/gocwiki/GSIndex
- GStat 2.0 Overview documentation
 - http://goc.grid.sinica.edu.tw/gocwiki/GSOverview
- GStat 2.0 Project Plan
 - http://goc.grid.sinica.edu.tw/gocwiki/GSProjectPlan
- A guide for developers
 - http://goc.grid.sinica.edu.tw/gocwiki/GSDevelopersGuide
- GStat installation guide
 - http://goc.grid.sinica.edu.tw/gocwiki/GSInstallationGuide

The Current implementation

Enabling Grids for E-sciencE

- The result of a collaboration between Operations team at ASGC and the Grid Deployment Group at CERN
- Team Members:

Project Lead	Min Tsai
GS core (Topology DB)	Laurence Field
GS validation (Testing)	Tauqir Fatima
GS monitoring	Felix Ehm
GS visualization	Joanna Huang