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MOTIVATION AND OUTLINE

After the plastic collision of two massive bodies a configuration may

form describing a black hole far away from equilibrium. Subsequently,

emission of gravitational radiation drives the system to equilibrium

state – that of a static black hole – after sufficiently long time.

An analogous situation seems to arise in heavy ion collisions, leading

to the formation of a new state of matter (quark–gluon plasma) that

thermalizes, reaching equilibrium after sufficiently long time.

The problems have been studied extensively numerically/experimentally.

There have also been theoretical attempts to connect them using ideas

of holography in the context of AdS5/CFT4 correspondence. Black hole

hydrodynamics arose as bi-product and it also serves as valuable (semi-

realistic) tool to study the transport properties of quark–gluon plasma.



Non-equilibrium phenomena are interesting but notoriously difficult

to study analytically far away from equilibrium.

We’ll consider an exact model for such phenomena that shares many

similarities with the mathematical theory of geometric flows, in the

context of geometric analysis, which is a mathematician’s framework

for non-equilibrium phenomena.

• It derives from general relativity as model of gravitational radiation

emitted from bounded sources in four space-time dimensions.

[As such, it can also been used to illustrate the validity of Penrose

(and other related) inequalities].

• It admits a holographic description in the context of AdS4/CFT3

correspondence, allowing for comparison with hydrodynamics.

The model is special in many respects, it does not admit any higher

dimensional generalizations, but it is interesting to consider anyway.



SPHERICAL GRAVITATIONAL WAVES

Long time ago Robinson–Trautman considered special class of metrics

in four space-time dimensions describing outgoing radiation emitted

from bounded sources in the form of spherical gravitational waves.

Using retarded time u they assumed metrics of the form

ds2 = 2r2eΦ(z,z̄;u)dzdz̄ − 2dudr − F (r, u, z, z̄)du2 .

and found that Einstein equations with cosmological constant Λ, i.e.,

Rµν = Λ gµν, can be partially integrated to yield the front factor F ,

F = r∂uΦ−∆Φ− 2m

r
− Λ

3
r2 ,

where ∆ = e−Φ∂z∂z̄ is the Laplace–Beltrami operator on S2. ∆Φ is the

curvature of S2 at fixed r, which, as it turns out, varies with u.



Φ satisfies a parabolic fourth-order non-linear differential equation,

called Robinson–Trautman equation,

3m∂uΦ + ∆∆Φ = 0 .

Given sufficiently smooth data, the metric on S2 evolves by dissipating

curvature perturbations trying to reach the constant curvature metric,

as in heat flow equations



Proper study of the evolution with respect to u relies on the theory of

geometric flow equation noting the connection with Calabi flow on S2.

Recall the general definition of Calabi flow on a Kähler manifold M ,

say compact without boundaries,

∂ugab̄ =
∂2R

∂za∂z̄b
,

deforming the metric gab̄ by derivatives of the Ricci scalar curvature.

On S2 with metric

ds2
2 = 2eΦ(z,z̄;u)dzdz̄

Calabi flow is identical to Robinson–Trautman equation (with 3m = 2)

for R = −2∆Φ.



Calabi flow on S2 cannot be solved in closed form, but it exhibits some

properties that are sufficient for our purposes:

• For any given initial data at u0, a solution exists for all u ≥ u0.

• All trajectories flow to a fixed point, as u →∞, associated to the

constant curvature metric on S2,

eΦ0 =
1

(1 + zz̄/2)2
.

• The area of S2 and the average curvature < R >∼ χ(S2) remain fixed

throughout the evolution, but not higher moments of the curvature,

like Calabi’s functional < R2 > =
∫

S2

√
g R2 that acts as an entropy

functional, decreasing monotonically along the flow lines.



Close to the fixed point the equation linearizes and one can easily

compute the damping rate of different harmonics. Thus, assuming

axial symmetry (for simplicity) and parametrizing all perturbations

of the round S2 in terms of Legendre polynomials (l ≥ 2), as

ds2
2 = [1 + εl(u)Pl(cosθ)]

(
dθ2 + sin2θdφ2

)
,

we find that the perturbations are damped exponentially as

εl(u) = εl(0)exp
(
− u

12m
(l − 1)l(l + 1)(l + 2)

)
≡ εl(0)e−iωsu

with fall-off rate given by the characteristic imaginary frequencies

ωs = −i
(l − 1)l(l + 1)(l + 2)

12m
.



Returning back to the Robinson-Trautman metric in four space-time

dimensions, we can assign a definite meaning to all previous results:

• Starting from sufficiently smooth data at u0, the space-time metric

exists for all u ≥ u0 and after infinitely long time it settles to a static

solution that is nothing else but the exterior of a Schwarzschild black-

hole with mass m and cosmological constant Λ:

ds2 =
2r2

(1 + zz̄/2)2
dzdz̄ − 2dudr −

(
1− 2m

r
− Λ

3
r2

)
du2

written in Eddington-Filkenstein frame. To pass to ordinary frame we

set u = t− r?, using the tortoise coordinate r? defined as dr? = dr/f (r)

with profile function f (r) = 1 − 2m/r − Λr3/3 .



• At late times, the four-dimensional solution is a small perturbation

of the black-hole metric associated to the algebraically special modes

which are purely out-going total transmission modes that vanish on

the horizon at r = rh. Comparison with the theory of quasi-normal

modes reveals that such modes are zero energy states of an effective

Schrödinger problem for the polar (vs axial) perturbations of the

black-hole,

[
d2

dr2
?

+ W 2(r) +
dW (r)

dr?
]Ψ(r) = E Ψ(r) ,

where E = ω2 − ω2
s and

W (r) =
6mf (r)

r[(l − 1)(l + 2)r + 6m]
+ iωs .



The algebraically special modes are purely dissipative corresponding

to “ringing” frequencies

ω = ωs = −i
(l − 1)l(l + 1)(l + 2)

12m
= −2i

m
, − 10i

m
, − 30i

m
, · · · .

As in supersymmetric quantum mechanics, they satisfy a first order

equation

QΨ(r?) =

(
− d

dr?
+ W (r?)

)
Ψ(r?) = 0 .

Thus, the Robinson-Trautman metrics are formed by superposition

of the algebraically special modes as compared to all other classes of

radiative metrics that require making use of the entire set of quasi-

normal modes.



Linear as well as not linear effects can be captured by the late time

expansion of the solutions. Parametrizing deviations from equilibrium

state as

eΦ(z,z̄;u) =
1

σ2(z, z̄; u) (1 + zz̄/2)2

we may expand systematically as

σ(z, z̄; u) = 1 + σ1(z, z̄)e−2u/m + σ2(z, z̄)e−4u/m + · · ·

showing only the quadrupole and the first non-linear correction to it.

For axially symmetric solutions we obtain recursively, setting x = cosθ,

σ1(x) = a

(
x2 − 1

3

)
, σ2(x) = −a2

(
23

78
x4 − 47

39
x2 +

49

234

)
, · · · .



In view of the holographic applications of AdS4 Robinson-Trautman,

we note the mixed boundary conditions satisfied by the algebraically

special modes,

d

dr?
Ψ

(0)
+ (r?) |r?=0 =

(
iωs − 2mΛ

(l − 1)(l + 2)

)
Ψ

(0)
+ (r? = 0) .

Here, r? ranges from −∞ to 0 as r ranges from rh to +∞.

The corresponding wave-functions are normalizable,

∫ 0

−∞
dr? | Ψ

(0)
+ (r?) |2< ∞ .

They amount to a metric at conformal infinity I = R× S2 that is not

conformally flat; its evolution is also governed by Calabi flow.



The Penrose diagram of AdS4 Robinson–Trautman space-times is

H +

u

=
∞

I

r = ∞

u

=
u
0

r = 0

but it turns out that Kruskal extension across the future horizon H+

breaks down completely for sufficiently large AdS4 black-holes, which

are thermodynamically favorable.



PENROSE (AND OTHER) INEQUALITIES

Robinson–Trautman space-times provide a nice example to illustrate

the validity of Penrose (and other related) inequalities.

• Bondi mass: Motivated by Λ = 0, we consider the mass formula

MBondi =
m

4π

∫

S2
dµ0

1

σ3

which can be shown to decrease monotonically with time u, reaching

m as u →∞.

• Past apparent horizon: It is a marginally trapped surface Σ defined

by the embedding equation r = U(z, z̄) for constant u with U satisfying

a variant of Tod–Penrose equation in the presence of Λ



2∆(logU) + ∆Φ +
2m

U
+

Λ

3
U2 = 0 .

A solution U(z, z̄, u) always exist and it is unique for Λ ≤ 0. Then, the

area of the past apparent horizon is

Area(Σ) =

∫

S2
dµ0

(
U

σ

)2

.

[It is not known if the horizon area varies monotonically wrt u].

It can be shown, using Holder and Sobolev inequalities, that although

MBondi and Area(Σ) both vary with u, the following version of Penrose

inequality holds for all Λ ≤ 0,

16πM2
Bondi ≥ Area(Σ)

(
1− Λ

3

Area(Σ)

4π

)2

.



To appreciate the non-triviality of the inequality, one may use the late

time expansion of Calabi flow to compute MBondi and Area(Σ) to any

given order. For axially symmetric solutions, setting x = cosθ, we have

σ(x; u) = 1+a

(
x2 − 1

3

)
e−2u/m−a2

(
23

78
x4 − 47

39
x2 +

49

234

)
e−4u/m

up to O(e−6u/m) terms, leading to the following late time expansions

MBondi = m[1 +
2a2

15
e−4u/m +O

(
e−6u/m

)
]

and

Area(Σ) = 4πr2
h[1+

16a2mr2
h

15(3m− rh)(2rh + 3m)2
e−4u/m+O

(
e−6u/m

)
] .



Another inequality is provided by Thorne’s hoop conjecture, stating

(when generalized in the presence of cosmological constant)

4πM≥ C(Σ)

(
1− Λ

3

(
C(Σ)

2π

)2
)

for appropriately defined mass M and circumference C lassoing the

black-hole. The Robinson–Trautman space-times provide a realization

of it, letting MBondi be the mass and C be the length of the shortest

closed geodesic on the past apparent horizon Σ. However, there might

be a more stringent bound, choosing C to be the Birkhoff length of Σ.

• All inequalities turn into equalities at the equilibrium state, u = ∞.



HOLOGRAPHIC RENORMALIZATION

The AdS4 Robinson–Trautman metric is an example of asymptotically

locally AdS space-time. The boundary metric (after rescaling) is

ds2
I = −dt2 − 6

Λ
eΦ̂dzdz̄

and the corresponding energy-momentum tensor turns out to be

κ2Ttt = −2mΛ

3
, κ2Ttz = −1

2
∂z(∆̂Φ̂) ,

κ2Tzz̄ = meΦ̂, κ2Tzz = − 3

4Λ
∂t

(
(∂zΦ̂)2 − 2∂2

zΦ̂
)

,

whereas Ttz̄ = T̄tz , Tz̄z̄ = T̄zz .



The energy-momentum tensor is traceless and conserved, as it should

T a
a = 0 , ∇aTab = 0

by the classical equations of motion provided by the boundary version

of Calabi flow,

3m∂tΦ̂ + ∆̂∆̂Φ̂ = 0 ,

where Φ̂ is the boundary value of Φ

Φ̂(z, z̄; t) = lim
r?→0

Φ(z, z̄; u)

and ∆̂ = e−Φ̂∂z∂z̄ is the corresponding Laplace–Beltrami operator

on the spatial slices S2 of I = R× S2.



The boundary is not conformally flat, hereby accounting for part of

the gravitational radiation that is being transmitted through space.

The Cotton tensor of the boundary metric γ, which is a traceless and

symmetric tensor that is covariantly conserved without employing the

equations of motion,

Cab =
εacd

√−detγ
∇c

(
Rb

d −
1

4
δb

dR

)
,

turns out to be

Czz = i
Λ

3
κ2Tzz , Cz̄z̄ = −i

Λ

3
κ2Tz̄z̄ ,

Ctz = i
Λ

3
κ2Ttz , Ctz̄ = −i

Λ

3
κ2Ttz̄ .



HYDRODYNAMIC CONSIDERATIONS

On the boundary we have a 2+1 dimensional relativistic fluid that can

be very far away from equilibrium. As t →∞, the system thermalizes.

To compare with first order hydrodynamics we have to linearize the

energy-momentum tensor around the black-hole equilibrium state and

determine the corresponding energy density ρ and the time-like unit

vector ua so that

Tab ub = −ρ ua .

Then, Tab takes the perfect fluid form plus a viscous term,

T ab = ρuaub + p∆ab + Πab ,



where ∆ab = uaub + gab. The viscous term is

Πab = −ησab − ζ∆ab(∇cu
c) ,

where

σab = 2∇<aub>

using the short-hand notation

A<ab> =
1

2

(
∆ac∆bd(Acd + Adc)−∆ab∆cdAcd

)
.

The bulk viscosity coefficient ζ = 0, since the fluid is conformal. For

that reason we also have ρ = 2p.



The effective shear viscosity coefficient η can be determined for each

algebraically special mode. Explicit computation shows that

κ2η =
1

4
l(l + 1)

and so the ratio of shear viscosity to the entropy density for large AdS4

black holes turns out to be

η

s
=

4

r2
h

(
− 3

Λ

)
η =

1

4π
· l(l + 1)rh

4m
.

As such, it violates the celebrated KSS bound for sufficiently low l.

[Recall that large black holes have m > rh > L =
√
−3/Λ ].



The modes giving rise to KSS bound are also purely dissipative with

Ωs = −i
(l − 1)(l + 2)

3rh

as compared the algebraically special modes, which have

ωs = −i
(l − 1)l(l + 1)(l + 2)

12m
.

Thus, the end result is neatly summarized as follows,

η

s
=

1

4π

ωs

Ωs
.

Curiously, Ωs dictate the late time expansion of the normalized Ricci

flow on S2, but they do not extend to non-linear gravitational regime.



Entropy production is established by considering the entropy current

sa = sua, where s is the local entropy density that is related to the

energy density ρ via the thermodynamic relations of 2 + 1 dimensional

conformal fluids,

s = γT 2, ρ = 2p =
2γ

3
T 3

setting γ = −4π2/3Λ for large AdS4 black-holes.

Expanding all fields to order e−4t/m (quadrupole plus first non-linear

corrections) one finds that there is entropy production such that

∇as
a =

η

2T0
σabσ

ab ,

as it should be on general grounds [Landau–Lifshitz].



SUMMARY AND OUTLOOK

We have considered an exact model for non-equilibrium dynamics

encompassing linear as well as non-linear phenomena of gravity in four

space-time dimensions (in the presence of cosmological constant)

and studied its global and holographic aspects in connection with

the mathematical theory of geometric flows.

This model can be used further to expose more general aspects of the

theory of gravitational radiation in asymptotically locally AdS spaces

as well as provide a systematic interpretation of the energy and entropy

densities at the boundary.
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