

Outline

- Analysis and results of hadron beam data
- PWA of the $\pi^{-} \pi^{+} \pi^{-}$and $\pi^{-} \pi^{0} \pi^{0}$ final states and observation of a new isovector meson
- Search for the Z_{c} (3900) in COMPASS
- Analysis and results of muon beam data
- Global NLO QCD fit to world data on g_{1}
- Determination of $\Delta g / g$ using "all- p_{T} " events
- Sivers/Collins asymmetries in the Drell-Yan $x-Q^{2}$ region
- Interplay between the dihadron asymmetry and the Collins asymmetry
- The gluon Sivers asymmetry
- Pion multiplicities and fragmentation function
- Hardware prepa ion for the 2014 short Drell-Yan run

Hadron beam analysis

Diffractive resonance production in $\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p_{\text {recoil }}$

Isobar model
Partial waves :
$\mathrm{J}^{\mathrm{PC}} \mathrm{M}^{\varepsilon}$ [isobar] L
J^{PC}-exotic mesons
$2008 \mathrm{\ell H}_{2}$ data, $4 \times 10^{7} \pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$ and
$3.6 \times 10^{6} \pi^{-} p \rightarrow \pi^{-} \pi^{0} \pi^{0} p$: large statistics

Partial Wave Analysis (PW

Step 1: In ($M_{3 \pi}, t^{\prime}$) bins, 88 PW, (27 with thresholds) Impose isobar description

Step 2: $M_{3 \pi}$ dependent fits on selected waves, combined fit of t^{\prime} bins
(same mass, width; different background and couplings)

Extract resonance parameters

A look to major waves

Good agreement between charged $\pi^{-} \pi^{+} \pi^{-}$and mixed $\pi^{-} \pi^{0} \pi^{0}$ final states

(a) $1^{++} 0^{+} \rho \pi S$ wave with the $a_{1}(1260)$ peak.

(c) $2^{-+} 0^{+} f_{2}(1270) \pi S$ wave with the $\pi_{2}(1670)$ peak

(b) $2^{++} 1^{+} \rho \pi D$ wave with the $a_{2}(1320)$ peak

(d) $0^{-+} 0^{+} f_{0}(980) \pi D$ wave with the $\pi(1800)$ peak.

(a) $1^{++} 0^{+} \rho \pi S$ wave with the $a_{1}(1260)$ peak

(b) $2^{++} 1^{+} \rho \pi D$ wave with the $a_{2}(1320)$ peak

Spin exotics $J^{P C}=1^{-+}$

- Both analyses show a broad intensity distribution without a clear peak at 1.6 GeV / c^{2}.
- However, slow phase motions of about 50 are observed
- The region around $1.1 \mathrm{GeV} / c^{2}$ (no resonances expected), exhibits fit instabilities.

Spin exotics $J^{P C}=1^{-+}$

Striking t^{\prime} dependence of $J^{P C}=$ $1^{-+} \rho \pi P$ spectrum.

- low t^{\prime} the wave exhibits a broad intensity distribution
- Increasing t^{\prime} the intensity shifts towards higher masses leaving a narrower peak at about $1.6 \mathrm{GeV} / c^{2}$
i.e. spin-exotic influenced by nonresonant contributions (interpretatior depends on non-resonant terms modelling)

Green points; modelling of Deck effect

(a) $0.100<t^{\prime}<0.113(\mathrm{GeV} / c)^{2}$

(b) $0.262<t^{\prime}<0.326(\mathrm{GeV} / c)^{2}$

New iso-vector meson a_{1} (1420)

We have identified a new iso-vector axial-vector meson with of $J^{P C}=1^{++}$, the $a_{1}(1420)$:

- mass of $1420 \mathrm{MeV} / c^{2}$, a (rather small) width of $140 \mathrm{MeV} / c^{2}$.
- Exotic (non- $q \bar{q}$) features since onlv decay as $f_{0}(980) \pi$ ($f_{0}(980)$ superposition of $q \bar{q}$ and $s \bar{s}$ states).

Interpretation

The $a_{1}(1420)$ signal inside the $1^{++} 0^{+} f_{0}(980) \pi P$ wave has a strength about 100 times less than the main wave, $1^{++} 0^{+} \rho \pi S$ (it can be the reason why escaped detection in previous experiments).

Still unclear the origin; possible explanations:

- It can be associated with the $f_{1}(1420)$, an isoscalar resonance with strong coupling to $K \bar{K}^{*}$ final state, often interpreted as a molecular state: almost equal masses and similar narrow widths (first time that an isospin partners of exotic states were discovered).
- Another possibility is a dynamic generation through the strong coupling of the systems $a_{1}(1420), f_{0}(980) \pi$, and $K \bar{K}^{*}$.

Particle	$J^{P C}$	Mass Range			
preliminary	Width Range				
$\left[\mathbf{M e V} / c^{2}\right]$	$\left[\mathbf{M e V} / c^{2}\right]$	PDG Values m "Established" states $\left./ c^{2}\right]$ $\Gamma\left[\mathbf{M e V} / c^{2}\right]$			
$a_{1}(1260)$	1^{++}	$1260-1290$	$360-420$	1230 ± 40	$250-600$
$a_{2}(1320)$	2^{++}	$1312-1315$	$108-115$	$1318.3_{-0.6}^{+0.5}$	107 ± 5
$a_{4}(2040)$	4^{++}	$1928-1959$	$360-400$	1996_{-9}^{+10}	255_{-24}^{+28}
$\pi_{2}(1670)$	2^{-+}	$1635-1663$	$265-305$	1672.2 ± 3.0	260 ± 9
$\pi(1800)$	0^{-+}	$1768-1807$	$212-280$	1812 ± 12	208 ± 12
$\pi_{2}(1880)$	2^{-+}	$1900-1990$	$210-390$	1895 ± 16	235 ± 34
States not in PDG summary table					
$a_{1}(1420)$	1^{++}	$1412-1422$	$130-150$	-	-
a_{1}^{\prime}	1^{++}	$1920-2000$	$155-255$	1930_{-70}^{+30}	155 ± 45
a_{2}^{\prime}	2^{++}	$1740-1890$	$300-555$	1950_{-70}^{+30}	180_{-70}^{+30}

Conclusions

- A large effort in view of publication:

- Three publications foreseen in 2014.
- A short letter on the finding of $a_{1}(1420)$ state
- The results from the partial-wave decomposition in mass and t^{\prime} bins (details of analysis)
- A long paper will present more detailed results on the parameters and t^{\prime} dependencies of various resonances.

All three papers are currently in the drafting stage

The search for $Z_{C}(3900)$

- $Z_{C}(3900)$ was recently discovered by the BES-III and Belle Collaborations in $e^{+} e^{-} \longrightarrow\left(Z_{C}^{ \pm} \rightarrow J / \psi \pi^{ \pm}\right) \pi^{\mp}$ at $\sqrt{S}=4.26$ GeV

- $Z_{C}(3900)$ can be produced by the interaction of an incoming photon with a virtual charged pion provided by the target nucleon (expected $\sigma \sim 50 \div 100 \mathrm{nb}$ in kinematic region close to COMPASS)

Limits on $Z_{C}(3900)$ in COMPASS

- Expected mass resolution $\sim 15 \mathrm{MeV} / c^{2}$ (as for $\psi(2 S)$ in the spectra of J/ $\psi \pi^{+} \pi^{-}$)
- Upper limit for $N_{Z_{c}}^{U L}=13$, while for the reference process we counted

$$
N_{J / \psi}=11.6 \times 10^{3}
$$

or $\sigma_{\gamma N \rightarrow Z_{C}^{ \pm}(3900) N} \times B R(J / \psi \pi)<31 \mathrm{pb}$

 $\Gamma_{J / \psi \pi}<1.8 \mathrm{MeV} / c^{2}$ since $\Gamma_{\text {tot }}=46 \mathrm{MeV} / \mathrm{c}^{2}$ What is the main decay mode?

$\sqrt{s_{\gamma N}}$ range (GeV)	$\left\langle\sqrt{s_{\gamma N}}\right\rangle$, GeV	$\sigma_{Z_{c}} / \sigma_{J / \psi} \times$ $B R(J / \psi \pi), 10^{-3}(\mathrm{CL=90} \mathrm{\%})$
Full	13.8	2.2
<12.3	10.8	7.0
$[12.3,14.1)$	13.2	2.2
$[14.1,15.4)$	14.7	6.6
≥ 15.4	16.4	4.4

Muon beam analysis

Global NLO QCD fits to world data on g_{1}

- 138 out of 679 points are from COMPASS

$g_{1}=\frac{1}{2}\left\langle e^{2}\right\rangle\left(C^{S}\left(\alpha_{s}\right) \otimes \Delta q_{S}+C^{N S}\left(\alpha_{s}\right) \otimes \Delta q_{N S}+C^{g}\left(\alpha_{S}\right) \otimes \Delta g\right)$
$\Delta q_{S}=\Delta u+\Delta d+\Delta s ; \Delta q_{N S}$ is a combination of $\Delta q_{3}=\Delta u-\Delta d$ and $\Delta q_{8}=\Delta u+\Delta d-2 \Delta s$

Evolving as

$$
\begin{aligned}
& \frac{d}{d \ln Q^{2}} \Delta q_{N S}=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \quad \Delta P_{q q} \quad \otimes \Delta q_{N S} \\
& \frac{d}{d \ln Q^{2}}\binom{\Delta q_{S}}{\Delta g}=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi}\left(\begin{array}{cc}
\Delta P_{q q} & 2 n_{f} \Delta P_{q g} \\
\Delta P_{q g} & \Delta P_{g g}
\end{array}\right) \otimes\binom{\Delta q_{S}}{\Delta g}
\end{aligned}
$$

First moments of Δq_{3} and Δq_{8} fixed by baryon decay constants $(F+D)$ and ($3 F-D$) assuming $S U(2)_{f}$ and $S U(3)_{f}$ symmetries.

$$
\Delta f_{k}(x)=\Delta q_{k} \frac{x^{\alpha_{k}}(1-x)^{\beta_{k}}\left(1+\gamma_{k} x+\rho \sqrt{x}\right)}{\int_{0}^{1} x^{\alpha_{k}}(1-x)^{\beta_{k}}\left(1+\gamma_{k} x+\rho \sqrt{x}\right)}
$$

Results

3 initial Δg shapes; positive, negative with node.

Distribution	First moment at $Q^{2}=3(\mathrm{GeV} / c)^{2}$
$\Delta \Sigma$	$\left[\begin{array}{cc}0.25, & 0.34] \\ \Delta u+\Delta \bar{u} & {[0.82,} \\ \Delta d+\Delta 5] \\ \Delta d+\Delta \bar{d} & {[-0.45,-0.42]} \\ \Delta s+\Delta \bar{s} & {[-0.11,-0.08]} \\ \hline\end{array} \mathrm{e}\right.$

Range in $\Delta \Sigma$ driven by uncertainty on initial Δg shape

$\Delta g / g$ using "all p_{T} " events

- The main goal is to improve the extraction by removing few sources of systematic effects.
- However, also a considerable reduction of the statistical error of $\Delta g / g$ was achieved.
- Three processes contribute to the cross-section

$$
A_{L L}^{h}(x)=R_{L O} D A_{1}^{L O}(x)+R_{P Q C D} a_{L L}^{Q C D C} A_{1}^{L O}\left(x_{C}\right)+R_{P G F} a_{L L}^{P G F} \frac{\Delta g}{g}\left(x_{g}\right)
$$

- Simultaneous extraction of $\Delta g / g$, and $A_{1}^{L O}$
- Extraction based on effective Monte Carlo description of all processes giving the relative weights $\left(R_{i}\right)$ and analyzing powers $\left(a_{L L}^{i}\right)$
- Process weights depends on p_{T} (at small p_{T} LO contribution is >0.95)

$\Delta g / g$ using "all p_{T} " events: correlations

$\Delta g / g$ using "all p_{T} " events: results

$\Delta g /\left.g\right|_{\left\langle x_{g}\right\rangle=0.10}=0.113 \pm 0.038 \pm 0.035$

$\left\langle x_{g}\right\rangle$	x_{g} range	$\Delta g / g$
$x_{g}=0.08$	$0.04-0.13$	0.087 ± 0.050
$x_{g}=0.12$	$0.07-0.21$	0.149 ± 0.051
$x_{g}=0.19$	$0.13-0.28$	0.154 ± 0.122

Test of universality

T-odd character of the Boer-Mulders and Sivers functions
In order not vanish by time-reversal invariance T-odd SSA require an interaction phase generated by a rescattering of the struck parton in the field of the hadron remnant

these functions are process dependent, they change sign to provide the gauge invariance
Boer-Mulders

$$
\boldsymbol{h}_{1}^{\perp}(\text { SIDIS })=-\boldsymbol{h}_{1}^{\perp}(D Y)
$$

Time reversal

Sivers

$$
f_{i} \frac{1}{T}(S I D I S)=-f_{i} \frac{\perp}{T}(D Y)
$$

Q^{2} vs x phase space at COMPASS

The phase spaces of the two processes overlap at COMPASS \rightarrow Consistent extraction of TMD DPFs in the same region

Collins and Sivers for different Q^{2} ranges

Mean TMD SSA for the four Q^{2} ranges

The Collins mechanism
J. Collins, NPB396 (93)

Collins angle
$\mathbf{k} \times \mathbf{P}_{h} \cdot \mathbf{S}_{T} \propto \cos \left(\frac{\pi}{2}-\phi\right)=\sin \phi$
transverse motion of hadron
spin analyzer of fragmenting quark
single-spin asymmetry \rightarrow convolution

$$
A_{U T}^{\sin (\phi)} \propto\left[h_{1}^{q} \otimes H_{1}^{\perp q \rightarrow h}\right]
$$

TMD factorization

The Di-hadron Fragm. Funct. mechanism
Collins, Heppelman, Ladinsky, NP B420 (94)

$\mathbf{P}_{h} \times \mathbf{R}_{T} \cdot \mathrm{~S}_{T}^{\prime} \propto \cos \left(\phi_{\mathrm{S}_{T}^{\prime}}-\left(\phi_{R_{T}}+\pi / 2\right)\right)$ $=\cos \left(\pi-\phi_{S}-\left(\phi_{R_{T}}+\pi / 2\right)\right)$
$=\sin \left(\phi_{R_{T}}+\phi_{S}\right)$
azimuthal orientation of hadron pair = spin analyzer of fragmenting quark single-spin asymmetry \rightarrow product

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)} \propto h_{1}^{q}(x) H_{1}^{\varangle q \rightarrow h_{1} h_{2}}\left(z, R_{T}^{2}\right)
$$

Radici, Jakob,Bianconi PR D65 (02); Bacchetta, Radici, PR D67 (03) collinear factorization evolution equations understood
[M. Radici, IWHSS2013]

Interplay between Collins and IFF asymmetries

common hadron sample for Collins
 and 2 h analysis
$\phi_{2 h}$ azimuthal angle of $\vec{R}_{N}=\hat{p}_{T, h^{+}}-\hat{p}_{T, h^{-}}$
ϕ_{R} azimuthal angle of \vec{R}_{T}

Hint to a at a common physical origin for the H_{1}^{\perp} and the H_{1}^{\Varangle} as originally suggested by different models

Sivers asymmetry on deuteron for Gluons

$$
A_{U T}^{\sin \left(\phi_{2 h}-\phi_{S}\right)}(x)=R_{L O} A_{L O}^{\sin \left(\phi_{2 h}-\phi_{S}\right)}(x)+R_{Q C D C} A_{Q C D C}^{\sin \left(\phi_{2 h}-\phi_{S}\right)}\left(x_{C}\right)+R_{P G F} A_{P G F}^{\sin \left(\phi_{2 h}-\phi_{S}\right)}\left(x_{g}\right)
$$

Correlation between azimuthal angle of the gluon ϕ_{g} and azimuthal angle of the two hadrons $\phi_{2 h}$ (assumption $\vec{p}_{g} \approx \vec{p}_{h 1}+\vec{p}_{h 2}$)

Sivers asymmetry on deuteron for Gluons

First extraction of the Sivers function for gluons

$A_{P G F}^{\sin \left(\phi_{2 h}-\phi_{S}\right)}\left(x_{g} \approx 0.126\right)=-0.14 \pm 0.15 \pm 0.06$

Measured asymmetry is small in aeement with xpectations

- Based on deuteron COMPASS data, Brodsky and Gardner [Phys.Lett.B643:22-28,2006] foresaw gluon Sivers $f_{1 T, g}^{\perp}=0$
- From the analysis of PHENIX data at mid rapidity, Anselmino et al. [Phys.Rev.D74:094011,2006] put constrains to $f_{1 T, g}^{\perp}$ at small x

Exclusive ρ^{0} production on p^{\uparrow}

new - COMPASS, PLB 731 (2014)
asymmetries published also as functions of $X_{B j}, Q^{2}$ and $p_{T}{ }^{2}$

- indication of H_{T}, 'transversity' GPD, contribution
- larger effects for some asymmetries expected for exclusive ω production, ongoing analysis

Pion multiplicities $\left(\mu d \rightarrow \mu \pi^{ \pm} X\right)$

- Multiplicities are defined as the differential cross section for hadron production normalized to the inclusive DIS cross sect

$$
M^{h}=\frac{d^{3} \sigma^{h}\left(x, Q^{2}, z\right) / d x d Q^{2} d z}{d^{2} \sigma^{D I S}\left(x, Q^{2}\right) / d x d Q^{2}}=\frac{\Delta x \Delta Q^{2}}{N^{D I S}\left(x, Q^{2}\right)} \cdot \frac{N^{h}\left(x, Q^{2}, z\right)}{\Delta x \Delta Q^{2} \Delta z}=\frac{\sum_{q} e_{q}^{2} q\left(x, Q^{2}\right) D_{q}^{h}\left(z, Q^{2}\right)}{\sum_{q} e_{q}^{2} q\left(x, Q^{2}\right)}
$$

COMPASS SPSC STATUS REPORT

NLO fit of DSS
[PRD76:074033 2007]

Pion analysis is finished, Now kaons!

Quark FF from pion multiplicities

- LO fit performed (MSTW08 for PDFs)
- Imposing isospin and charge symmetry
- Assuming $D_{S}^{\pi^{ \pm}}=D_{\bar{u}}^{\pi^{ \pm}}$

$$
D^{i}\left(z, Q_{0}^{2}\right)=N_{i} z^{\alpha_{i}}(1-z)^{\beta_{i}}\left[1+\gamma_{i}(1-z)^{\delta_{i}}\right]
$$

Only two pion fragmentation functions remain $D_{\text {fav }}^{\pi^{ \pm}}$and $D_{\text {unfav }}^{\pi^{ \pm}}$

Conclusions

- Progress in the analysis of longitudinal, transverse and unpolarized data.
- Moving from single to multidimensional analysis of the data to take into account of the large dynamics and correlations shown

Standard COMPASS Spectrometer+

Hadron beam: Drell-Yan setup

Major activities

- Magnet repair and installation of the PT target
- New DAQ preparation
- DC5 construction and ins tallation
- Absorber construction and installation
- Sci-Fi vertex detector for the DY

Magnet repair and installation

- After repair and consolidation a power test at full current was performed successfully by the end of March
- The magnet was moved to 888 by the end of April and presently the work for reinstalling it is ongoing

Target preparation

- Preparation of a two-cell target
- Consolidation of the ${ }^{3} \mathrm{He}$ pump system

Ongoing as planned

New DAQ preparation

- Ageing of DATE and no revision foreseen for SLC6
- New custom made DAQ system based on hardware event builder together with a set of software packages for control and monitoring.
- The event builder is implemented in nine FPGA modules
- Eight modules perform data concentration by merging sub events from up to 15 front-end modules.
- The ninth module receives assembled sub-events from the first eight modules, completes the event building, and distributes them to up to eight online computers

Sustained system bandwidth is 1.5 GBytes/s

DC5 construction and installation

Work progressing at full speed but schedule is tight. Decision on installation planned for middle of July

Absorber construction and installation

- Tungsten core to absorb the uninteracting beam
- Alumina body $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ to absorb hadrons from pion interactions in the target, while minimizing muons (from DY $\pi^{-} p \rightarrow \mu^{+} \mu^{+} X$) multiple scattering

Sci-Fi vertex detector

- Ready for installation when shielding around the absorber installed

Publications and talks at conferences

- Publications last 12 months

1. Transverse target spin asymmetries in exclusive ρ^{0} muoproduction, PLB B 731 (2014) 96 and CERN-PH-EP/2013-191.
2. Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons, accepted for publication in NPB and CERN-PH-EP/2014-009.
3. A high statistics measurement of transverse spin effects in dihadron production from muon-proton semiinclusive deep-inelastic scattering, accepted for publication on PLB and CERN-PH-EP/2014-013.
4. Measurement of radiative widths of $a_{2}(1320)$ and $\pi_{2}(1670)$, Eur. Phys. J. A 50 (2014) 79 , and CERN-PH-EP/2014-041.
5. Spin alignment and violation of the OZI rule in exclusive ω and ϕ production in $p p$ collisions, submitted to EPJA and CERN-PH-EP/2014-096.
6. Measurement of the Charged-Pion Polarisability, submitted to PRL and CERN-PH-EP/2014-109,

- Three more papers in the final circulation + other drafting close to finish
- Talks at conferen
- 138 presentations to Conferences and Workshops in 2013;
- 55 presentations to Conferences or Workshops in 2014, till June 20.

Pion polarisabilities - Primakoff 2009 data

Polarisabilities: deviation from pointlike particle
electric (α) and magnetic (β)

$$
\begin{aligned}
\alpha_{\pi}+\beta_{\pi} & =(0.2 \pm 0.1) \cdot 10^{-4} \mathrm{fm}^{3} \\
\alpha_{\pi}-\beta_{\pi} & =(5.7 \pm 1.0) \cdot 10^{-4} \mathrm{fm}^{3} \\
\alpha_{\pi} & =(2.9 \pm 0.5) \cdot 10^{-4} \mathrm{fm}^{3}
\end{aligned}
$$

Experiments inconclusive:

$$
\begin{aligned}
\alpha_{\pi}-\beta_{\pi}= & 4-14 \cdot 10^{-4} \\
& \text { assuming }\left(\alpha_{\pi}+\beta_{\pi}=0\right)
\end{aligned}
$$

At LO, Compton cross section is proportional to $\alpha_{\pi}-\beta_{\pi}$ $\pi \gamma \rightarrow \pi \gamma$ measured via $\quad \pi \mathrm{Z} \rightarrow \pi \mathrm{Z} \gamma$

Pion polarisability - result

2009 data π^{-}Ni $\rightarrow \pi^{-}$Ni γ exclusive reaction

- high resolution vertexing, precise calorimetry, calibrations, alignment
- precise MC description of spectrometer performance,
α_{π} extracted from comparison of data to MC (point-like)

$$
\alpha_{\pi}=\left(2.0 \pm 0.6_{\text {stat }} \pm 0.7_{\text {syst }}\right) \times 10^{-4} \mathrm{fm}^{3}
$$

Bjorken sum rule

- The new proton data allow to improve the test of the Bjorken sum rule performed by using COMPASS data alone.
$Q^{2}=3 \mathrm{GeV} / \mathrm{c}$ $\Gamma_{1}^{N S}\left(Q^{2}\right)=\int_{0}^{1} g_{1}^{N S}\left(x, Q^{2}\right) d x=\frac{1}{6}\left|\frac{g_{A}}{g_{V}}\right| C_{1}^{N S}\left(Q^{2}\right) \quad g_{1}^{N S}\left(x, Q^{2}\right)=g_{1}^{p}\left(x, Q^{2}\right)-g_{1}^{n}\left(x, Q^{2}\right)$

$$
\Gamma_{1}^{N S}\left(Q^{2}\right)=0.190 \pm 0.009_{\text {stat }} \pm 0.015_{\text {syst }}
$$

Bjorken sum rule validated within 4\%

2012 data analysis - Primakoff run

In progress:

- Data production delayed by finalization of 2009
- Improvements of ECAL signal treatment inoduce and data being processed
- Good vertex resolution achieve

2012 data analysis - DVCS run

Many improvements:

- Characterization of CAMERA RPD well advances
- Time/Position calibrations
- Efficiency according to expectations
- Impact of exclusive reactions selection as expected

- We do not necessarily foresee the excl f the ring A slabs, provided that beam detector allows to reach the expected
- ECALs characterization
- ECALO ${ }_{1 / 4}$, ECAL1 and ECAL2 calibrated
- Improved time/amplitude extraction for noisy part of ECAL1, allowing to lower the thresholds closed to the expected value of 300 MeV [PS: noisy bases have been replaced in the meanwhile
- Flux determination under study. Progress but 3\% not yet reached.

2012 data analysis - DVCS run

Next steps:

- Production of MC data with LEPTO and HEPGEN or DIDIS and exclusive events for acceptance corrections.
- Determination of DIS cross section sing both μ^{+}and μ^{-}data.
- Determination of the BH, DVCS ad π^{0} cross ections as a function of x.
- Study of the t-dependence of ne sum of e DVCS cross sections induced with μ^{+}and μ^{-}beams

COMPASS spectroscopy

Mesons quantum numbers in CO

$$
S=0,1 ; \quad \vec{J}=\vec{L}+\vec{S} ; \quad P=(-1)^{L+1} ; \quad C=(-1)^{L+S}
$$

- forbidden (exotic QN's)

$$
\begin{gathered}
J^{P C}=0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \ldots \\
|q \bar{q} g\rangle
\end{gathered}
$$

- more states in QCD

Shape of mass in $2 \mathrm{t}^{\prime}$ bins

PWA $M_{3 \pi}$ dependent fit, ex: 2++

Need of a a_{1}^{\prime} and a_{2}^{\prime}

$$
11^{++} 0^{+} \rho(770) \pi S \quad 12^{++} 1^{+} \rho(770) \pi \mathrm{D}
$$

$$
\text { Mass of } \pi^{-} \pi^{+} \pi^{-} \text {System }\left(\mathrm{GeV} / c^{2}\right)
$$

Deck effect

- Additional production mechanism for the same final state \rightarrow non-resonant contribution
- An incident beam pion dissociates into a por
and virtual π. The virtual π scatters diffractively from the target protia Poneron) into a real state.

- Amplitude parametrisa ion:

$$
\psi(\lambda)=\frac{A_{\pi \pi}\left(\mathcal{M}_{\pi \pi}, t_{\pi}\right) \cdot A_{\pi p}\left(S_{\pi p}, t\right)}{m_{\pi}^{2}-t_{\pi}}
$$

with $A_{\pi \pi}$ scattering amplitude trough the ρ and/or f_{2}
$A_{\pi p} \pi^{-} p$ elastic scattering amplitude

$$
\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p
$$

3 pions, $I^{G}=1^{-}$, Pomeron isoscalar

$$
b=b_{0}+4 \alpha_{\mathbb{P}}^{\prime} \ln \sqrt{\frac{s}{s_{0}}} \quad \frac{d \sigma}{d t} \propto e^{-b t^{\prime}}
$$

$$
\begin{aligned}
0^{-+}\left(\pi^{-}\right)+2^{++}(\text {Pomer } n) \rightarrow & \begin{array}{c}
\left(2^{-+}\right)_{L=0} \oplus \\
\left(1^{++}, 2^{++}, 3^{++}\right)_{L=1} \oplus
\end{array} \\
& \left(1^{++}, 2^{-+}, 3^{-+}, 4^{-+}\right)_{L=2} \oplus \\
& \left(1^{++}, 2^{++}, 3^{++}, 4^{++}, 5^{++}, 4^{-+}, 5^{-+}, 6^{-+}\right)_{L=4} \oplus
\end{aligned}
$$

$\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$

Assumption: resonances dominates the intermediate $X^{-}\left[J^{P C} M^{\epsilon}\right]$ state: this means that the amplitude can be Factorized in two terms (production of a particul ar X And decay to a particular $\pi^{-}\left(\pi^{+} \pi^{-}\right)_{L \text { stat }}$

$$
\begin{aligned}
& \mathcal{J}\left(m_{X}, t^{\prime}, \tau\right)= \sum_{i, k} \tilde{T}_{i}\left(m_{X}, t^{\prime}\right) \tilde{T}_{k}^{*}\left(m, t^{\prime}\right) \sum_{j, l} \psi_{i, j}\left(\beta \tau_{X}, \tau\right) \psi_{k, l}^{*}\left(m_{X}, \tau\right) \\
&\left.\equiv \sum_{i, k} \rho_{i k}\left(\tau_{X}, t^{\prime}\right)\right\rangle \psi
\end{aligned}
$$

$\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$

Particle $J^{P C} \quad$ Mass $\left[\mathrm{MeV} / c^{2}\right] \quad$ Width $\left[\mathrm{MeV} / c^{2}\right]$

"Established" states

$a_{0}(980)$	0^{++}	980 ± 20	50 to 100
$a_{1}(1260)$	1^{++}	1230 ± 40	250 to 600
$a_{2}(1320)$	2^{++}	$1318.3_{-0.6}^{+0.5}$	107 ± 5
$a_{0}(1450)$	0^{++}	1474 ± 19	265 ± 13
$a_{4}(2040)$	4^{++}	1996_{-9}^{+10}	255_{-24}^{+28}
$\pi(1300)$	0^{-+}	1300 ± 100	200 to 600
$\pi_{1}(1400)$	1^{-+}	1354 ± 25	330 ± 35
$\pi_{1}(1600)$	1^{-+}	1662_{-9}^{+8}	241 ± 40
$\pi_{2}(1670)$	2^{-+}	1672.2 ± 3.0	260 ± 9
$\pi(1800)$	0^{-+}	1812 ± 12	208 ± 12
$\pi_{2}(1880)$	2^{-+}	1895 ± 16	235 ± 34

States "omitted from summary table"

$a_{1}(1640)$	1^{++}	1647 ± 22	254 ± 27
$a_{2}(1700)$	2^{++}	1732 ± 16	194 ± 40
$\pi_{2}(2100)$	2^{-+}	2090 ± 29	625 ± 50

"Further" states

$a_{3}(1875)$	3^{++}	$1874 \pm 43 \pm 96$	$385 \pm 121 \pm 114$
$a_{1}(1930)$	1^{++}	1930_{-70}^{+30}	155 ± 45
$a_{2}(1950)$	2^{++}	1950_{-70}^{+30}	180_{-70}^{+30}
$a_{2}(1990)$	2^{++}	$2050 \pm 10 \pm 40$	$190 \pm 22 \pm 100$
		$2003 \pm 10 \pm 19$	$249 \pm 23 \pm 32$
$a_{0}(2020)$	0^{++}	2025 ± 30	330 ± 75
$a_{2}(2030)$	2^{++}	2030 ± 20	205 ± 30
$a_{3}(2030)$	3^{++}	2031 ± 12	150 ± 18
$a_{1}(2095)$	1^{++}	$2096 \pm 17 \pm 121$	$451 \pm 41 \pm 81$
$\pi_{2}(2005)$	2^{-+}	$1974 \pm 14 \pm 83$	$341 \pm 61 \pm 139$
		2005 ± 15	200 ± 40
$\pi(2015)$	1^{-+}	$2014 \pm 20 \pm 16$	$230 \pm 32 \pm 73$
		$2001 \pm 30 \pm 92$	$333 \pm 52 \pm 49$
$\pi(2070)$	0^{-+}	2070 ± 35	310_{-50}^{+100}
$X(1775)$	$?^{-+}$	1763 ± 20	192 ± 60
		1787 ± 18	118 ± 60
$X(2000)$	$?^{?+}$	1964 ± 35	225 ± 50
		~ 2100	~ 500
		2214 ± 15	355 ± 21
			340 ± 80

SIDIS 1h x-section

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d z d P_{h \perp}^{2} d \varphi_{h} d \psi}=\left[\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\right] \times\left(F_{U U, T}+\varepsilon F_{U U, L}\right) \times \quad \varepsilon=\frac{1-y-\frac{1}{4} y^{2} \gamma^{2}}{1-y+\frac{1}{2} y^{2}+\frac{1}{4} y^{2} \gamma^{2}}, \gamma=\frac{2 x M}{Q} \\
& \left(1+\cos \varphi_{h} \times \sqrt{2 \varepsilon(1+\varepsilon)} A_{U U}^{\cos \phi_{h}}+\cos \left(2 \varphi_{h}\right) \times \varepsilon A_{U U}^{\cos \left(2 \varphi_{h}\right)}+\lambda \sin \varphi_{h} \times \sqrt{2 \varepsilon(1-\varepsilon)} A_{L U}^{\sin \varphi_{h}}+\right] \\
& S_{L}\left[\sin \varphi_{h} \times \sqrt{2 \varepsilon(1+\varepsilon)} A_{U L}^{\sin \varphi_{h}}+\sin \left(2 \varphi_{h}\right) \times \varepsilon A_{U L}^{\sin \left(2 \varphi_{h}\right)}\right]+ \\
& S_{L} \lambda\left[\sqrt{1-\varepsilon^{2}} A_{L L}+\cos \varphi_{h} \sqrt{2 \varepsilon(1-\varepsilon)} A_{L L}^{\cos \varphi_{h}}\right. \\
& {\left[\sin \varphi_{S} \times\left(\sqrt{2 \varepsilon(1+\varepsilon)} A_{U T}^{\sin \varphi_{S}}\right)+\right.} \\
& \sin \left(\varphi_{h}-\varphi_{S}\right) \times\left(A_{U T}^{\sin \left(\varphi_{h}-\varphi_{S}\right)}\right)+ \\
& \mathbf{S}_{T} \sin \left(\varphi_{h}+\varphi_{S}\right) \times\left(\varepsilon A_{U T}^{\sin \left(\varphi_{h}+\varphi_{S}\right)}\right)+ \\
& \sin \left(2 \varphi_{h}-\varphi_{S}\right) \times\left(\sqrt{2 \varepsilon(1+\varepsilon)} A_{U T}^{\sin \left(2 \varphi_{h}-\varphi_{S}\right)}\right)+ \\
& \sin \left(3 \varphi_{h}-\varphi_{S}\right) \times\left(\varepsilon A_{U T}^{\sin \left(3 \varphi_{h}-\varphi_{S}\right)}\right) \\
& \cos \varphi_{S} \times\left(\sqrt{2 \varepsilon(1-\varepsilon)} A_{L T}^{\cos \varphi_{S}}\right)+ \\
& \mathbf{S}_{T} \lambda\left[\begin{array}{l}
\cos \left(\varphi_{h}-\varphi_{S}\right) \times\left(\sqrt{\left(1-\varepsilon^{2}\right)} A_{U T}^{\cos \left(\varphi_{h}-\varphi_{S}\right)}\right)+ \\
\cos \left(2 \varphi_{h}-\varphi_{S}\right) \times\left(\sqrt{2 \varepsilon(1-\varepsilon)} A_{U T}^{\cos \left(2 \varphi_{h}-\varphi_{S}\right)}\right)
\end{array}\right]
\end{aligned}
$$

TMD Distribution Functions

unpolarised

\rightarrow (O) nucleon with transverse or longitudinal spin parton with transverse or longitudinal spin parton transverse momentum

Proton goes out of the screen. Photon goes into the screen

\mathbf{k}_{T} - intrinsic transverse momentum of the quark
Top \rightarrow Bottom

Nucleon polarization

U	f_{1}	h_{1}^{\perp}	
T	$f_{1 T}^{\perp}$	$h_{1}, h_{1 T}^{\perp}$	$g_{1 T}$
L		$h_{1 L}^{\perp}$	$g_{1 L}$

SIDIS access to TMDs

$$
\sigma\left(\ell p \rightarrow \ell^{\prime} h X\right) \sim q(x) \otimes \tilde{\sigma}^{\gamma q \rightarrow q} \otimes D_{\alpha}^{h}(z)
$$

Nucleon polarization

	U	T	L
U	f_{1}	h_{1}^{\perp}	
T	$f_{1 T}^{\perp}$	$h_{1}, h_{1 T}^{\perp}$	$g_{1 T}$
L		$h_{1 L}^{\perp}$	$g_{1 L}$

Factorisation (Collins \& Soper, Ji, Ma, Yuan, Qiu \& Vogelsang, Collins \& Metz...)

Key COMPASS measurements

$g_{1}^{d}(x), \quad \int g_{1}^{d}(x) d x$	Confirmation of SMC result on d (at variance with E142 claims)
$\Delta g / g$	first hint that Δg is small, at variance with predictions

First ${ }^{6}$ LiD data

2005	$A_{S i v, d}^{h}, A_{\text {Col,d }}^{h}$	First ${ }^{6}$ LiD data
2006	$A_{\text {Siv,d }}^{h}, A_{\text {Col,d }}^{h}$	Full ${ }^{6}$ LiD statistics
2009	$A_{\text {Siv,d }}^{\pi^{ \pm}, K^{ \pm}, K_{S}^{0}}, A_{\text {Col,d }}^{\pi^{ \pm}, K^{ \pm}, K_{S}^{0}}$	Full ${ }^{6}$ LiD statistics

$2010 \quad A_{\text {Siv, } p}^{h}, A_{\text {Col, } p}^{h} 2007 \mathrm{NH}_{3}$ data

2012
2012
2012

2013

2014

$$
A_{U T, p}^{\sin \phi_{S}}, A_{L T, p}^{\cos \phi_{S}}, A_{U T, p}^{\sin \left(2 \phi_{\rho}-\phi_{S}\right)} \ldots
$$

Full ${ }^{6} \mathrm{LiD}$ and NH_{3} statistics
Full NH_{3} statistics
Exclusive ρ^{0} production- Full ${ }^{6} \mathrm{LiD}$ and NH_{3} statistics

Unpolarized multiplicities on d
Unpol. azimuthal asymm.s
Excl. ρ^{0} production on NH_{3} preliminary

SIDIS

$$
\begin{array}{llll}
A_{U U}^{\cos \phi_{h}} & \propto \frac{1}{Q}\left(f_{1}^{q} \otimes D_{1 q}^{h}-h_{1}^{\perp q} \otimes H_{1 q}^{\perp h}+\cdots\right) & A_{L T}^{\cos \left(\phi_{h}-\phi_{s}\right)} & \propto g_{1 T}^{q} \otimes D_{1 q}^{h} \\
A_{U U}^{\cos 2 \phi_{h}} & \propto h_{1}^{\perp q} \otimes H_{1 q}^{\perp h}+\frac{1}{Q}\left(f_{1}^{q} \otimes D_{1 q}^{h}+\cdots\right) & A_{U T}^{\sin \phi_{s}} & \propto \frac{1}{Q}\left(h_{1}^{q} \otimes H_{1 q}^{\perp h}+f_{1 T}^{\perp q} \otimes D_{1 q}^{h}+\cdots\right) \\
A_{U T}^{\sin \left(\phi_{h}-\phi_{s}\right)} & \propto f_{1 T}^{\perp q} \otimes D_{1 q}^{h} & A_{U T}^{\sin \left(2 \phi_{h}-\phi_{s}\right)} & \propto \frac{1}{Q}\left(h_{1}^{\perp q} \otimes H_{1 q}^{\perp h}+f_{1 T}^{\perp q} \otimes D_{1 q}^{h}+\cdots\right. \\
A_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)} & \propto h_{1}^{q} \otimes H_{1 q}^{\perp h} & A_{L T}^{\cos \phi_{S}} & \propto \frac{1}{Q}\left(g_{1 T}^{q} \otimes D_{1 q}^{h}+\cdots\right) \\
A_{U T}^{\sin \left(3 \phi_{h}-\phi_{s}\right)} & \propto h_{1}^{\perp q} \otimes H_{1 q}^{\perp h} & A_{L T}^{\cos \left(2 \phi_{h}-\phi_{s}\right)} & \propto \frac{1}{Q}\left(g_{1 T}^{q} \otimes D_{1 q}^{h}+\cdots\right)
\end{array}
$$

$$
\begin{array}{lll}
A_{U}^{\cos 2 \varphi_{C S}} & \propto & h_{1, \pi}^{\perp q} \otimes h_{1, p}^{\perp q} \\
A_{T}^{\sin \left(2 \varphi_{C S}-\varphi_{S}\right)} & \propto & h_{1, \pi}^{\perp q} \otimes h_{1}^{q}
\end{array}
$$

$$
\begin{array}{lll}
A_{T}^{\sin \varphi_{C S}} & \propto & f_{1, \pi}^{q} \otimes f_{1 T, p}^{\perp q} \\
A_{T}^{\sin \left(2 \varphi_{C S}+\varphi_{S}\right)} & \propto & h_{1, \pi}^{\perp q} \otimes h_{1 T, p}^{\perp q}
\end{array}
$$

Sivers Asymmetry

Sivers: correlates nucleon spin \& quark transverse momentum $\mathrm{k}_{\mathrm{I}} / T-O D D$ at LO:

$$
A_{S i v}=\frac{\sum_{q} e_{q}^{2} f_{1 T_{q}}^{\perp} \otimes D_{q}^{h}}{\Gamma \boldsymbol{\rho}^{2} \otimes \boldsymbol{D}^{h}} \quad \boldsymbol{\mu} \boldsymbol{X}^{\uparrow}
$$

The Sivers PDF

1992	Sivers proposes $f_{1 T}^{\perp}$
1993	J. Collins proofs $f_{1 T}^{\perp}=0$ for T invariance
2002	S. Brodsky, Hwang and Schmidt demonstrate that $f_{1 T q}^{\perp}$ may be $\neq 0$ due to FSI
2002	J. Collins shows that $\left(f_{1 T}^{\perp}\right)_{D Y}=-\left(f_{1 T}^{\perp}\right)_{\text {SIDIS }}$
2004	HERMES on p: $A_{\text {Siv }}^{\pi^{+} \neq 0 \text { and } A_{\text {Siv }}^{\pi^{-}}=0}$
2004	COMPASS on d: $A_{\text {Siv }}^{\pi^{+}}=0$ and $A_{\text {Siv }}^{\pi^{-}}=0$
2008	COMPASS on p: $A_{\text {Siv }}^{\pi^{+}} \neq 0$ and $A_{\text {Siv }}^{\pi^{-}}=0$

$A_{1 d}^{L O}$ from standard analysis and all $-p_{T}$

Triangles: [PLB 647 (2007) 8-17]
Circles: all $-p_{T}$

$A_{L L}$ for single hadron photoproduction at high $-p_{T}$

Fig. 26: $A_{L L}$ asymmetries for the full COMPASS statistics on polarized deuteron and proton targets.

Data will be compared to calculations including the resummation of soft gluons, when they are available. The final goal is to include the data in a global fit of pPDFs to world spin-dependent data.

