

Results of the OPERA experiment

Giovanni De Lellis

University "Federico II" and INFN Napoli

On behalf of the OPERA Collaboration

Final performances of the CNGS beam after five years (2008 ÷ 2012) of data taking

Year	Beam days	P.O.T. (10 ¹⁹)
2008	123	1.74
2009	155	3.53
2010	187	4.09
2011	243	4.75
2012	257	3.86
Total	965	17.97

Record performances in 2011 Overall 20% less than the proposal value (22.5)

Last neutrino interaction recorded on December 3rd 2012

Present data analysis status

Facilities in operation

To be operated also next year

CS development facility underground: moving to a new site in hall B (top of the shielded area)

Current location of the facility

Map of the new facility

DISTRIBUZIONE FM E ILLUMINAZIONE

New site in preparation 2 months stop required

Next steps

- MoU for decommissioning being signed by the Funding Agencies: to start early next year
- Analysis of 2nd bricks going on
- Extension of the analysis to 3rd and 4th bricks planned (already extracted)
- When a decay topology is identified → 10÷20 bricks around selected to reduce the background (discard muon hypothesis for primary tracks)
- For the candidates not identified by the end of 2014

 → store surrounding bricks before or during the decommissioning
- A new site identified with LNGS for massive brick storage

Full revision of efficiencies and background JHEP 11 (2013) 036

Expected number of v_{τ} events

Current numbers based on

$$\Delta m_{23}^2 = 2.32 \times 10^{-3} \text{ eV}^2$$

Location efficiency

Good agreement in normalization and shape for 1μ events Good agreement in shape for 0μ events, 0μ data ~15% systematically lower than MC

Effect mainly due to bad quality films
In principle recoverable but lengthy → postponed

Sample	Selection	Expected events
All runs	1st and 2nd bricks (MC)	3.2
All runs	1st and 2nd bricks (data)	2.8
Current sample	1st all runs, 2nd for 2008-09 (data)	2.1

Improvements still not accounted for:

Extension of the analysis to 3^{rd} and 4^{th} bricks in the probability map, $\sim 20\%$

 $\sim 5 \div 10\%$ effect due to the migration of v_{τ} events from one τ decay channel to another, increasing signal only

Oscillation results

$\nu_{\mu} \rightarrow \nu_{e}$ analysis

4.1 GeV electron

 \sim 40 events found in the analyzed sample

Non-standard oscillations (2008-2009 runs only) JHEP 1307 (2013) 004

OPERA limit at large Δm^2 , $\sin^2(2\theta_{\text{new}}) < 7.2 \times 10^{-3}$ (Bayesian) New ICARUS limit at large Δm^2 , $\sin^2(2\theta_{\text{new}}) < 6.8 \times 10^{-3}$ (F&C) EPJ C73 (2013) 2599

Energy cut	$20~{\rm GeV}$	$30 \; \mathrm{GeV}$	No cut	
BG common to	BG (a) from π^0	0.2	0.2	0.2
both analyses	BG (b) from $\tau \to e$	0.2	0.3	0.3
	ν_e beam contamination	4.2	7.7	19.4
Total expected BG in 3-f	4.6	8.2	19.8	
BG to non-standard	ν_e via 3-flavour oscillation	1.0	1.3	1.4
oscillation analysis only				
Total expected BG in no	5.6	9.4	21.3	
Data	4	6	19	

Caveat: experiments with different L/E values

$\nu_{\mu} \rightarrow \nu_{\tau}$ analysis

- 2008-2009 runs without any kinematical selection
- Slower analysis speed (signal/noise not optimal)
- Good data/MC agreement demonstrated
- \rightarrow Apply kinematical selection (p < 15 GeV μ momentum cut) for 2010, 2011 and 2012 runs
- Prioritize the analysis of the most probable brick for all the events: optimal ratio between efficiency and analysis time. Then analyse the second, and 3rd and 4th ones

The first tau neutrino candidate event

Physics Letters B691 (2010) 138

Kinematical variables. All cuts passed: $\tau \rightarrow h$ candidate

Physics Letters B691 (2010) 138 LEAD LEAD LEAD — τ MC 1.5 data 0.5 0.5 0.5 15 p (GeV/c) 20 $\begin{array}{cc} 0.4 & 0. \\ \theta_{kink} \text{ (rad)} \end{array}$ 0.10.2 0.3 5 10 z_{dec} (mm) 0.8 0.6 0.4 0.5 0.5 0.2 $\Delta \phi_{\tau H} \frac{150}{\text{(degrees)}}$ 0.5 100 p_x^{2ry} (GeV/c) p_T^{miss} (GeV/c) $P_{2ry}(GeV/c)$ 12^{+6}_{-3} Kink angle (mrad) 41 ± 2 $P_{tmiss}\left(MeV/c\right)$ 570^{+320}_{-170} decay length (µm) 1335 ± 35 Pt_{2rv} (MeV/c) 470^{+240}_{-120} 173±2 Φ (degrees)

Giovanni De Lellis, SPSC June 14

15

24/06/14

Journal of High Energy Physics 11 (2013) 036

Kinematical variables. All cuts passed: $\tau \rightarrow 3h$ candidate

Journal of High Energy Physics 11 (2013) 036

Third tau neutrino event taken on May 2nd 2012

Third tau neutrino event $\tau \rightarrow \mu$

PHYSICAL REVIEW D 89 (2014) 051102(R)

Kinematical variables. All cuts passed: $\tau \rightarrow \mu$ candidate

Fourth tau neutrino event taken in September 2012

Analysis of interface emulsion films

Schematic view of the event topology

Event topology

~8.4mm

Event topology

Track features

			First measurement	Second measurement	Average	
	Track ID	Particle ID	Slopes	Slopes	Slopes	P (GeV/c)
1ry	1 parent	τ	-0.143, 0.026	-0.145, 0.014	-0.144, 0.020	-
	2	Hadron (Range)	-0.044, 0.082	-0.047, 0.073	-0.046, 0.078	1.9 [1.7, 2.2]
	3	Hadron (interact)	0.122, 0.149	0.139, 0.143	0.131, 0.146	1.1 [1.0, 1.2]
	4	proton	-0.083, 0.348	-0.080, 0.355	-0.082, 0.352	0.7 [0.6, 0.8] $p\beta = 0.4 [0.3, 0.5]$
	γ1	e-pair	-0.229, 0.068	-0.238, 0.055	-0.234, 0.062	0.7 [0.6, 0.9]
	γ2	e-pair	0.111, -0.014	0.115,-0.034	0.113,-0.024	4.0 [2.6, 8.7]
2ry	daughter	Hadron (Range)	-0.084, 0.148	-0.091, 0.145	-0.088, 0.147	6.0 [4.8, 8.2]

		ΔΖ (μm)	$\delta \theta_{RM}$ (mrad)	IP (μm)	IP Resolution (μm)	Attachment
γ1	To 1ry	676	21.9	2	8	OK
γ2	To 1ry	7176	9.2	33	43	OK
	To 2ry	6124	9.2	267	36	Excluded

 $M = 0.59^{+0.20}_{-0.15} \text{ GeV/c}^2$

Not a single π^0

Track follow-down: a powerful tool to assess the muonless nature of the event

Follow-down all tracks in downstream bricks

- 3 primary tracks to discard the charm hypothesis
- kink daughter to identify the τ decay channel

Track follow-down: primary track n. 2

Track n. 2 follow-down

Measured length x density, Lp

$$L\rho = 604 \text{ g/cm}^2 \text{ (<660 g/cm}^2\text{)}$$

Muon hypothesis rejected

Additional check:

Generate π and μ tracks originating in the same position as the observed event with momenta

$$P = 1.9^{+0.3}_{-0.2} \text{ GeV}/c$$

- Prob. for a μ to cross ≤ 12 planes $\sim 0.4\%$
- Prob. for a π to cross ≥ 12 planes $\sim 9.2\%$
- → Confirm the rejection of the muon hypothesis

24/06/14

Giovanni De Lellis, SP

Track follow-down: primary track n. 3

Interaction detected

Track 3 found down to the CS of the 2^{nd} brick P = 1.1 GeV/c at 2^{nd} brick

A vertex found near its predicted position in the 3rd downstream brick

Track follow-down: primary track n. 4

From the ionization, the proton hypothesis is made $P\beta \sim 0.4$, (P = 0.7 assuming proton mass)

Track path of 77.8 mm lead, Range/Mass \sim 94 g cm⁻² GeV⁻¹ Expected Range/Mass from measured momentum \sim 70 [45-100] g cm⁻² GeV⁻¹

Kinematical variables

Selection	Measured value
> 20	137 ± 4
< 2600	406 ± 30
> 2	$6.0_{-1.2}^{+2.2}$
$> 0.6 (0.3^*)$	$0.82^{+0.30}_{-0.16}$
< 1	$0.55^{+0.30}_{-0.20}$
> 90	166^{+2}_{-31}
	> 20 < 2600 > 2 $> 0.6 (0.3*)$ < 1

Transverse plane

It passes all the kinematical cuts

Paper being submitted

Kinematical variables: all cuts passed. $\tau \rightarrow$ h channel

Visible energy of all the candidates

Sum of the momenta of charged particles and γ 's measured in emulsion

Control sample and background studies

Charm events as a control sample

arXiv:1404.4357, being published on EPJC

	Events					
Decay topology	Expected	Expected	Expected	Observed		
	charm	background	total			
1-prong	21 ± 2	9 ± 3	30 ± 4	19		
2-prong	14 ± 1	4 ± 1	18 ± 2	22		
3-prong	4 ± 1	1.0 ± 0.3	5 ± 1	5		
4-prong	0.9 ± 0.2	-	0.9 ± 0.2	4		
Total	40 ± 3	14 ± 3	54 ± 4	50		

Good agreement both in normalization and in shape

Background studies: hadronic interactions

Comparison of large data sample (π - beam test at CERN) with Fluka simulation: check the agreement and estimate the systematic error of simulation

Track length analysed in the brick: 2 GeV/c: 8.5 m, 4 GeV/c: 12.6 m, 10 GeV/c: 38.5 m

Black: π - beam data

Red: MC (FLUKA) simulation

Good agreement within the statistical error: systematic error reduced to 30%

Nuclear fragments emission probability

Black: experimental data

Red : simulated data ($\beta = p/E = 0.7$)

It provides additional background reduction.

Nuclear fragments in 1 and 3 prong interactions

Rate in lead (10⁻⁶) and less in emulsion/base. No measurements except an upper limit: S.A. Akimenko et al., NIM A423 (1986) 518 (< 10⁻⁵ in lead). 10⁻⁵ rate used

Plan to revise this number by an experimental measurement with emulsion

Significance of the v_{τ} appearance

Data sample:

2008/09 runs: $398 0 \mu + 1553 1 \mu \text{ events}$

2010/11/12 runs: 582 $0\mu + 2153 1\mu \text{ events}$

The expected signal and background is normalized to the number of analysed events

$$n^{0\mu}(
u_{ au}^{CC}) = rac{\left\langle \sigma(
u_{ au}^{CC})
ight
angle}{\left\langle \sigma(
u_{\mu}^{CC})
ight
angle} rac{\left\langle \epsilon^{0\mu}(
u_{ au}^{CC})
ight
angle}{\left\langle \epsilon^{0\mu}(
u_{ au}^{CC})
ight
angle + lpha \left\langle \epsilon^{0\mu}(
u_{ au}^{NC})
ight
angle} \; n^{0\mu} \qquad lpha = rac{NC}{CC}$$

Decay	Expected		Expected background				
channel	signal	Observed	Total	Charm	Hadronic	Large-angle	
				decays	re-interactions	muon scattering	
au o 1h	0.41 ± 0.08	2	0.033 ± 0.006	0.015 ± 0.003	0.018 ± 0.005	/	
au o 3h	0.57 ± 0.11	1	0.155 ± 0.030	0.152 ± 0.030	0.002 ± 0.001	/	
$ au o \mu$	0.52 ± 0.10	1	0.018 ± 0.007	0.003 ± 0.001	/	0.014 ± 0.007	
au o e	0.62 ± 0.12	0	0.027 ± 0.005	0.027 ± 0.005	/	/	
Total	2.11 ± 0.42	4	0.233 ± 0.041	0.198 ± 0.040	0.021 ± 0.006	0.014 ± 0.007	

Two statistical methods:

- Fisher combination of single channel p-value
- Likelihood ratio

p-value =
$$1.03 \times 10^{-5}$$

Non oscillation excluded at 4.2 σ C.L. \rightarrow observation of v_{τ} appearance

First measurement of Δm_{32}^2 with v_{τ} appearance

$$N_{
u_ au} \propto \int \phi(E) \sin^2\left(rac{\Delta m_{32}^2 L}{4E}
ight) \epsilon(E) \sigma(E) dE$$
 OPERA Off-peak L/ ~ 43 Km/GeV $\propto (\Delta m_{32}^2)^2 L^2 \int \phi(E) \epsilon(E) rac{\sigma(E)}{E^2} dE$ (L/)

dependent on $\Delta m^2 \rightarrow$ measure Δm^2 with counting experiment

90% CL intervals assuming $\sin^2(2\theta_{23}) = 1$

Feldman & Cousin:

$$[1.8 - 5] \times 10^{-3} \text{ eV}^2$$

Bayesian:

$$[1.9 - 5] \times 10^{-3} \text{ eV}^2$$

Normal hierarchy

Sterile neutrinos

Tau appearance in presence of a sterile neutrino (3+1)

Solar driven oscillation neglected $\Delta_{21} \sim 0$

~ standard oscillation

interference

pure exotic oscillation

$$P_{
u_{\mu}
ightarrow
u_{ au}}=4|U_{\mu3}|^{2}|U_{ au3}|^{2}\sin^{2}rac{\Delta_{31}}{2}+4|U_{\mu4}|^{2}|U_{ au4}|^{2}\sin^{2}rac{\Delta_{41}}{2}$$

Profile likelihood using Tau rate only

$$\Delta m^2_{32} = 2.32 \times 10^{-3} eV^2$$

90% CL bounds on $U_{\tau 4}$ and $U_{\mu 4}$

 $+2\Re[U_{\mu 4}^*U_{\tau 4}U_{\mu 3}U_{\tau 3}^*]\sin\Delta_{31}\sin\Delta_{41}$ $-4\Im[U_{\mu 4}^* U_{\tau 4} U_{\mu 3} U_{\tau 3}^*] \sin^2 \frac{\Delta_{31}}{2} \sin \Delta_{41}$ $+8\Re[U_{\mu 4}^*U_{\tau 4}U_{\mu 3}U_{\tau 3}^*]\sin^2\frac{\Delta_{31}}{2}\sin^2\frac{\Delta_{41}}{2}$ $+4\Im[U_{\mu 4}^*U_{\tau 4}U_{\mu 3}U_{\tau 3}^*]\sin\Delta_{31}\sin^2rac{\Delta_{41}}{2}$

Complementary measurement w.r.t.

Sterile neutrinos

Choosing a particular representation

$$U = R_{34}(\theta_{34})R_{24}(\theta_{24,\delta_2})R_{14}(\theta_{14})R_{23}(\theta_{23})R_{13}(\theta_{13},\delta_1)R_{12}(\theta_{12},\delta_3)$$

 $\Delta_{21} \sim 0$ (solar oscillation) $s_{14} \sim 0$ (reactor anomaly) $\rightarrow \delta_1 = 0$

$$U = \begin{bmatrix} U_{e1} & U_{e2} & c_{14}s_{13}e^{-i\delta_{1}} & s_{14}e^{-i\delta_{2}} \\ U_{\mu 1} & U_{\mu 2} & -s_{14}s_{13}e^{-i\delta_{1}}s_{24}e^{-i\delta_{2}} + c_{13}s_{23}c_{24} & c_{14}s_{24}e^{-i\delta_{2}} \\ U_{\tau 1} & U_{\tau 2} & -s_{14}c_{24}s_{34}s_{13}e^{-i\delta_{1}} - c_{13}s_{23}s_{34}s_{24}e^{i\delta_{2}} + c_{13}c_{23}c_{34} & c_{14}c_{24}s_{34} \\ U_{s1} & U_{s2} & -s_{14}c_{24}c_{34}s_{13}e^{-i\delta_{1}} - c_{13}s_{23}c_{34}s_{24}e^{i\delta_{2}} + c_{13}c_{23}s_{34} & c_{14}c_{24}c_{34} \end{bmatrix}$$

$$P = sin^{2}(2\theta_{\mu\tau})sin^{2}(1.27\Delta m_{41}^{2}L/E)$$

 $P = \sin^2(2\theta_{\mu\tau})\sin^2(1.27\Delta m_{41}^2 L/E)$

good approximation for $\delta_2 = 0$

4 observed events and a background of 2.3 ± 0.4 events

 \rightarrow upper limit of 6.6 events at 90% CL for extra ν_{τ}

 $\rightarrow sin^2(2\theta_{\mu\tau}) < 0.082$

First observation of $v_{\mu} \rightarrow v_{\tau}$ in appearance mode

- Four candidates reported in the analysed sample
- 4.2σ significance
- First measurement of Δm^2 in appearance mode: $[1.8 5.0] \times 10^{-3}$ eV² (90% CL)
- Paper being submitted
- Constraints on sterile neutrinos: first limits on $|U_{\tau 4}|^2$ from direct measurement of $v_u \to v_\tau$ oscillations

Outlook

- v_{τ} search being extended to the other bricks of the probability map
- Improvements in the statistical analysis

Thank you for your attention