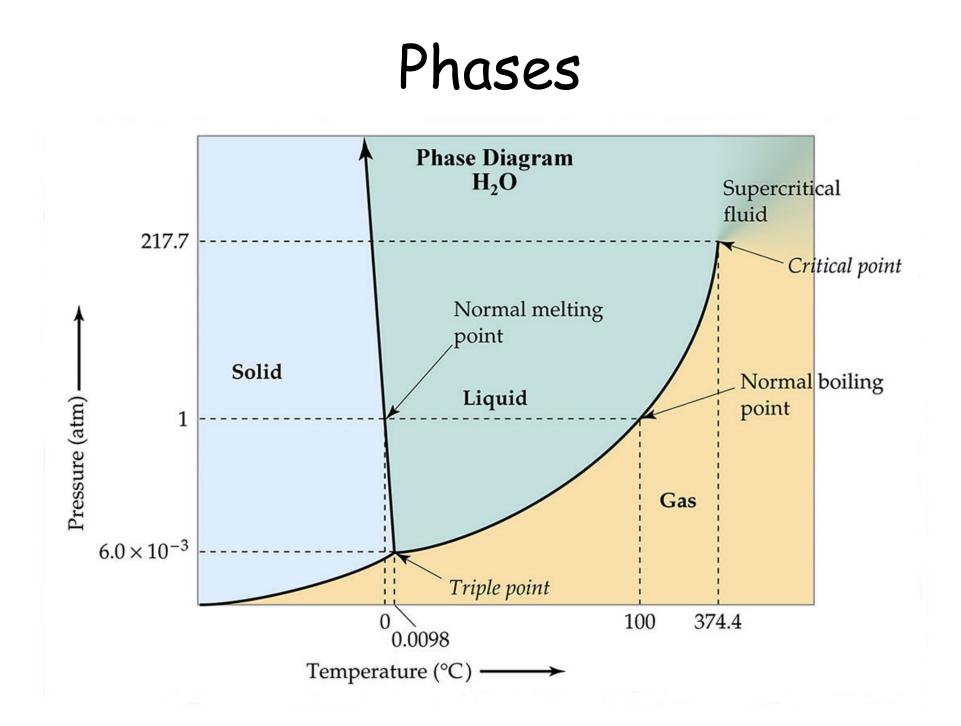


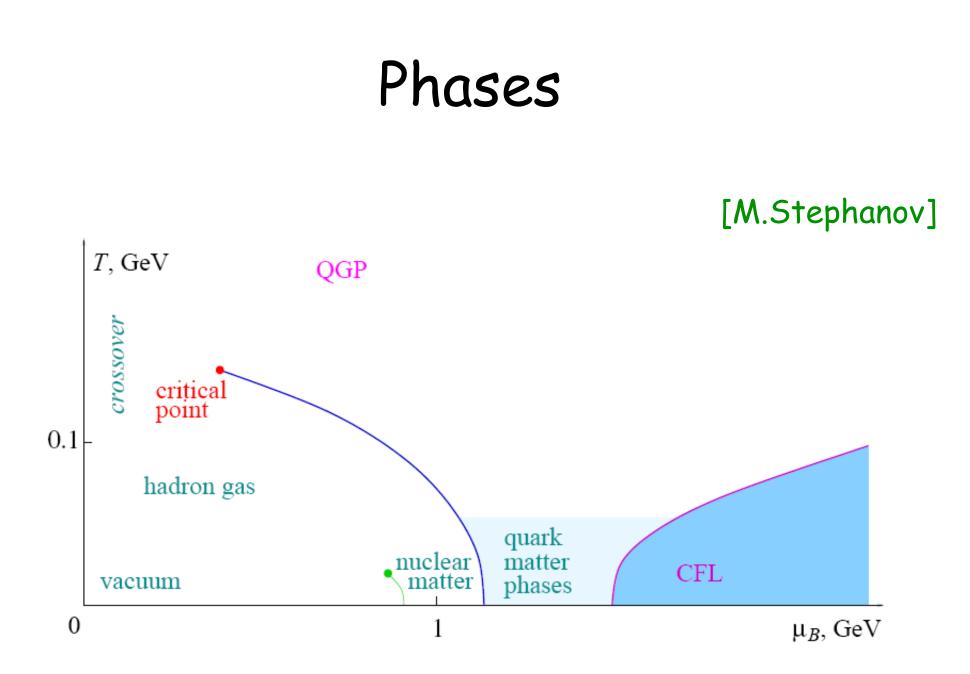
Confinement and 4-manifolds

based on:

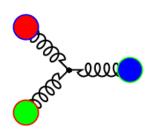
arXiv:1306.4320 (2d $\mathcal{N} = (0,2)$ theories labeled by 4-manifolds) arXiv:1404.2929 (duality defects and Lefschetz fibrations) arXiv:1404.5314 (exact solutions of $\mathcal{N} = (0,2)$ gauge theories)

with A.Gadde and P.Putrov





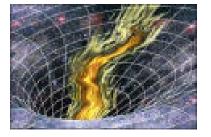
Can we quantitatively understand confinement and the mass gap?



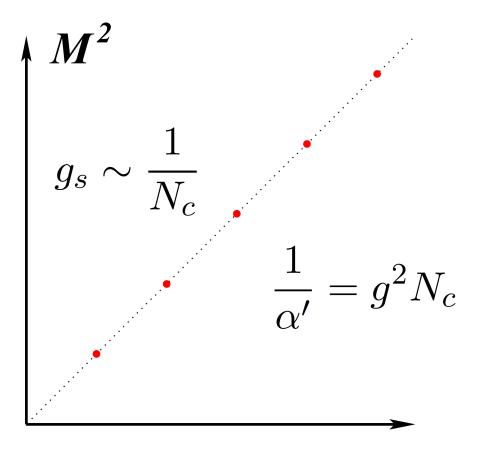
- Extensively tested in computer simulations
- Paper-and-pencil computation?

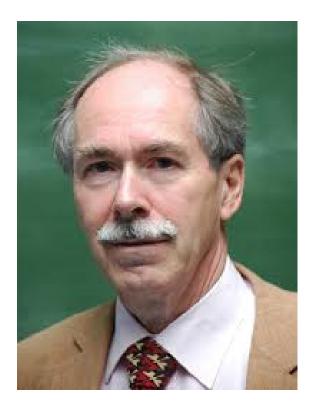
\$1,000,000 Prize

The answer may involve gravity!



Solvable Gauge Theories

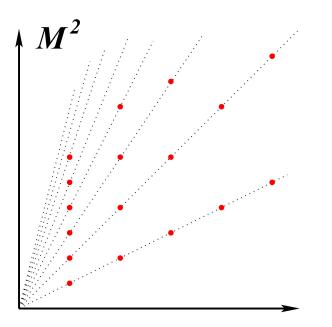




't Hooft

Solvable Gauge Theories

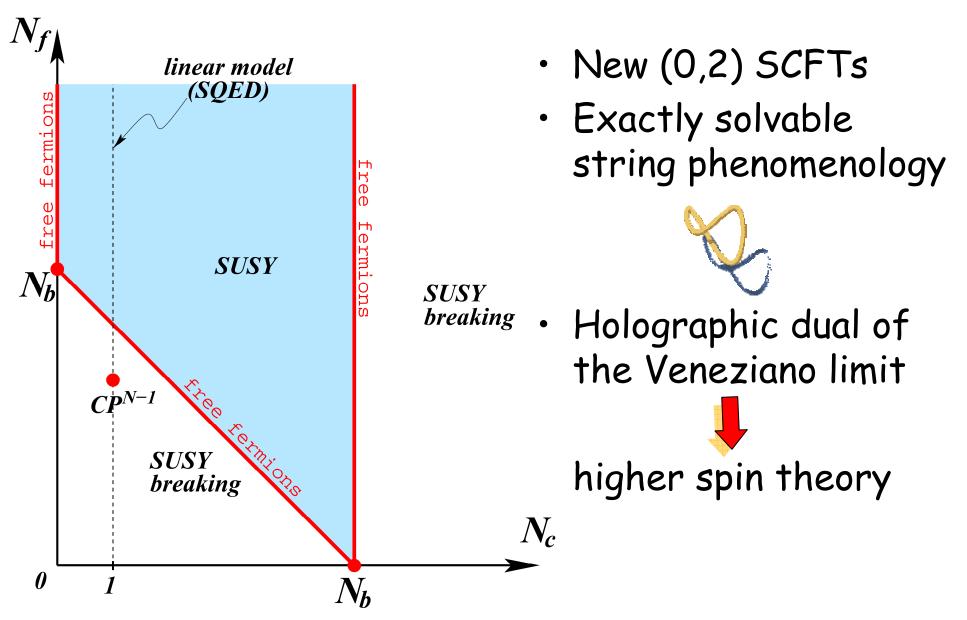
- 2d Yang-Mills: almost "topological"
- QED: confinement / screening
- 2d $\mathcal{N} = 0$ QCD: one Regge trajectory
- QCD with a massive adjoint: higher Regge

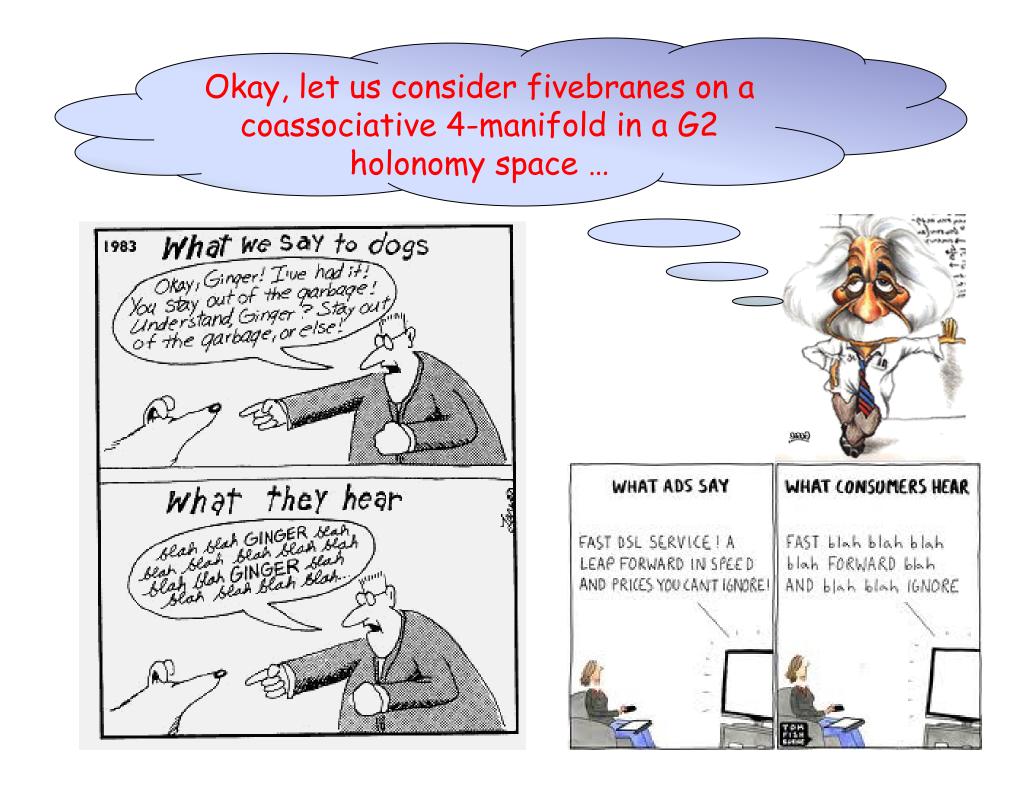


Solvable Gauge Theories

- 2d Yang-Mills: almost "topological"
- QED: confinement / screening
- 2d $\mathcal{N} = 0$ QCD: one Regge trajectory
- QCD with a massive adjoint: higher Regge
- 2d $\mathcal{N} = (1,1)$ SQCD: very similar
- 2d $\mathcal{N} = (0,2)$ SQCD: ?
- 2d $\mathcal{N} = (2,2)$ SQCD: ?

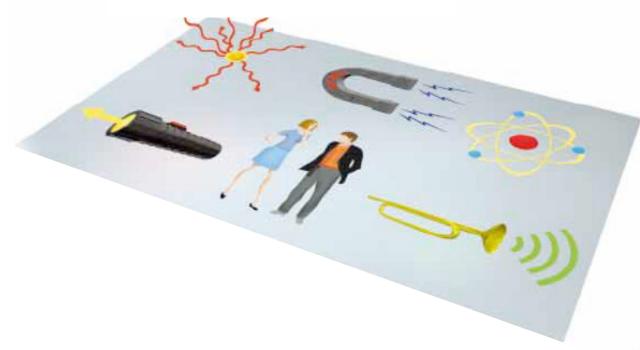
$2d \mathcal{N} = (0,2) SQCD$



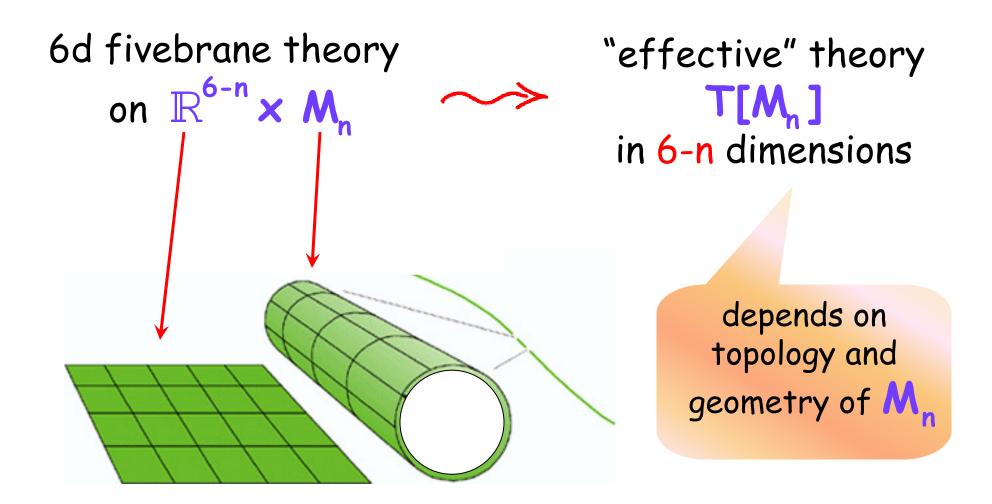


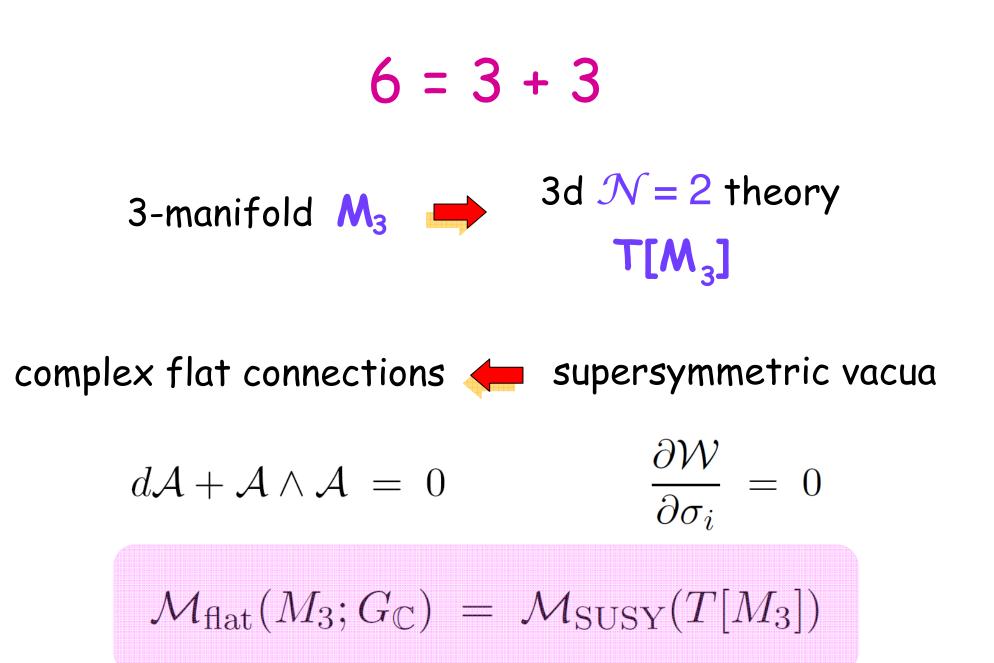
What are Fivebranes?

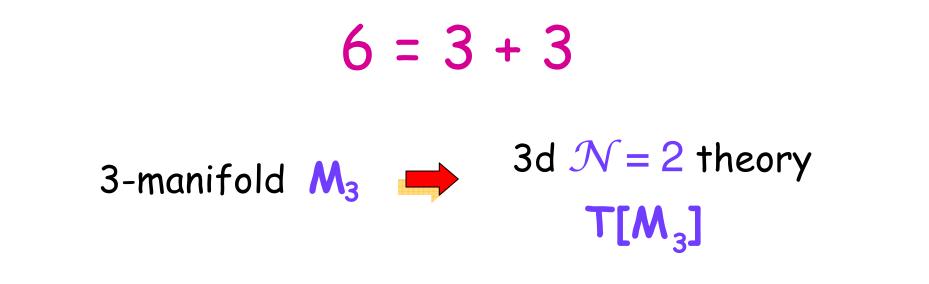
 6-dimensional submanifolds in 11-dimensional space-time of M-theory



Kaluza-Klein compactification





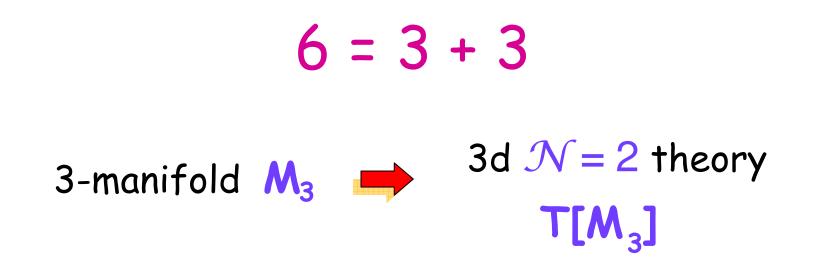


complex flat connections 🔶 supersymmetric vacua

Example: $M_3 = L(k, 1)$

 $\frac{\partial \mathcal{W}}{\partial \sigma_i} = 0$

 ρ = highest weight integrable representation of the loop group $\mathcal{L}G$ at level k



complex flat connections 🛻 supersymmetric vacua

- Knot complements: A-polynomial
- generalized / quantum / homological Volume Conjecture ...

 $\hat{A}(\hat{x},\hat{y}) Z(\mathbf{M}) = 0$

$$6 = 3 + 3$$

3-manifold $M_3 \implies 3d \mathcal{N} = 2$ theory
 $T[M_3]$

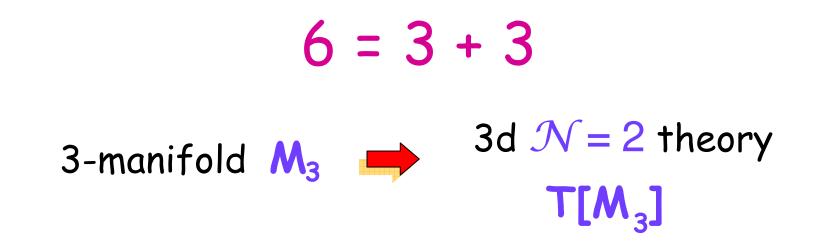
complex flat connections 🛻 supersymmetric vacua

complex Chern-Simons

partition function function

$$Z_{CS}(M_3; G_{\mathbb{C}}) = Z_{\text{vortex}}(T[M_3])$$

 $\hat{A}(\hat{x},\hat{y}) \ Z(\mathbf{M}) = 0$



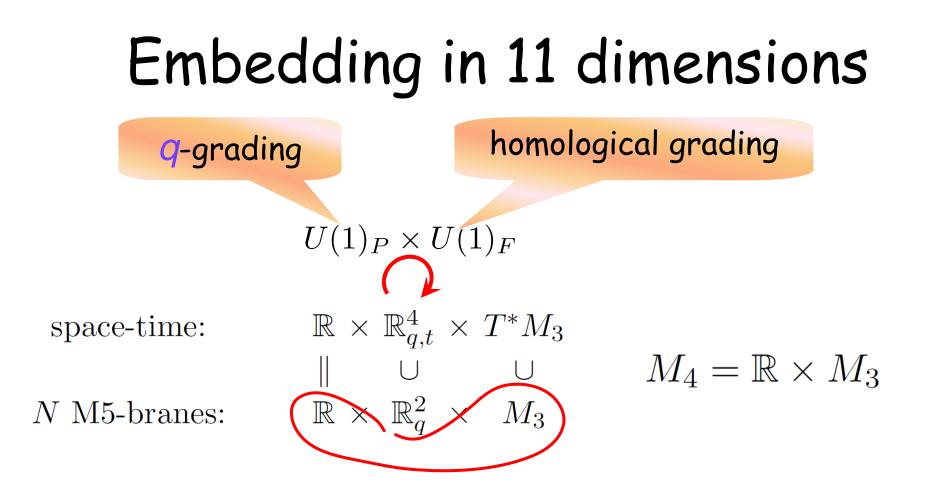
complex flat connections 🛻 supersymmetric vacua

complex Chern-Simons 🔶 vortex partition function partition function

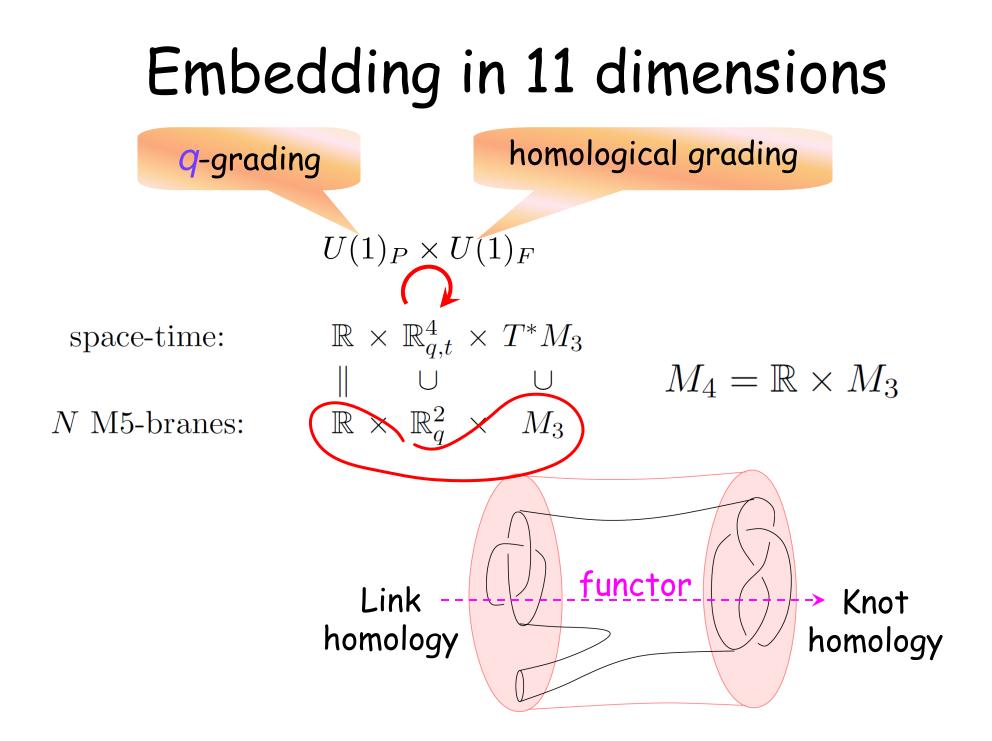
Knot homology

🔶 Q-cohomology

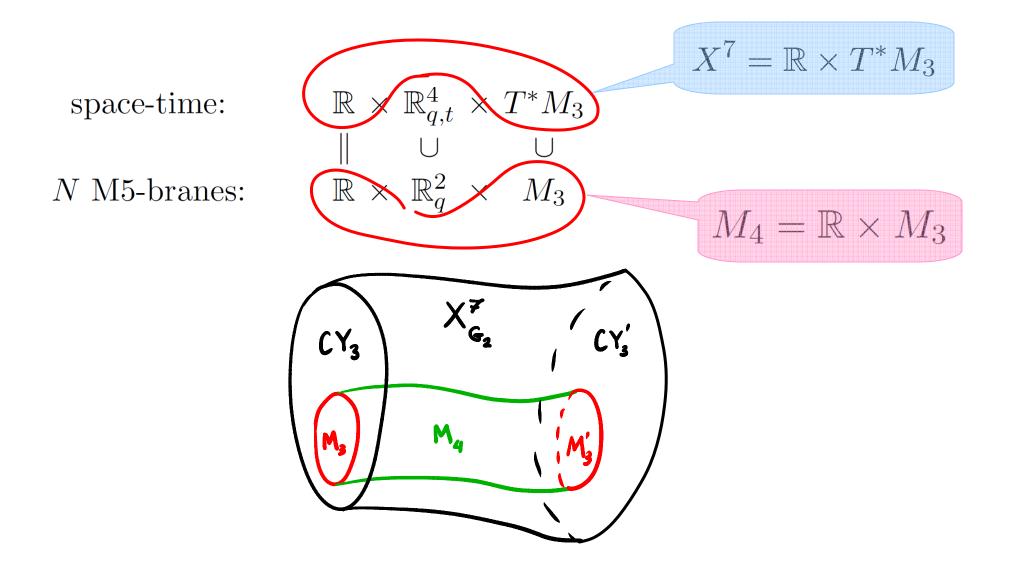
 $\mathcal{H}(\bigcirc) = \mathcal{H}_{\mathsf{RPS}}$

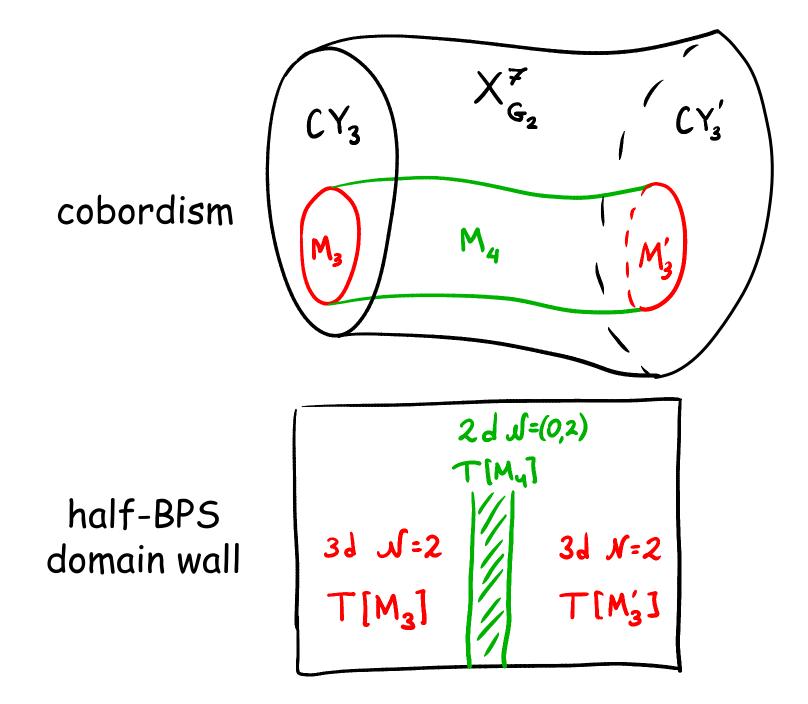


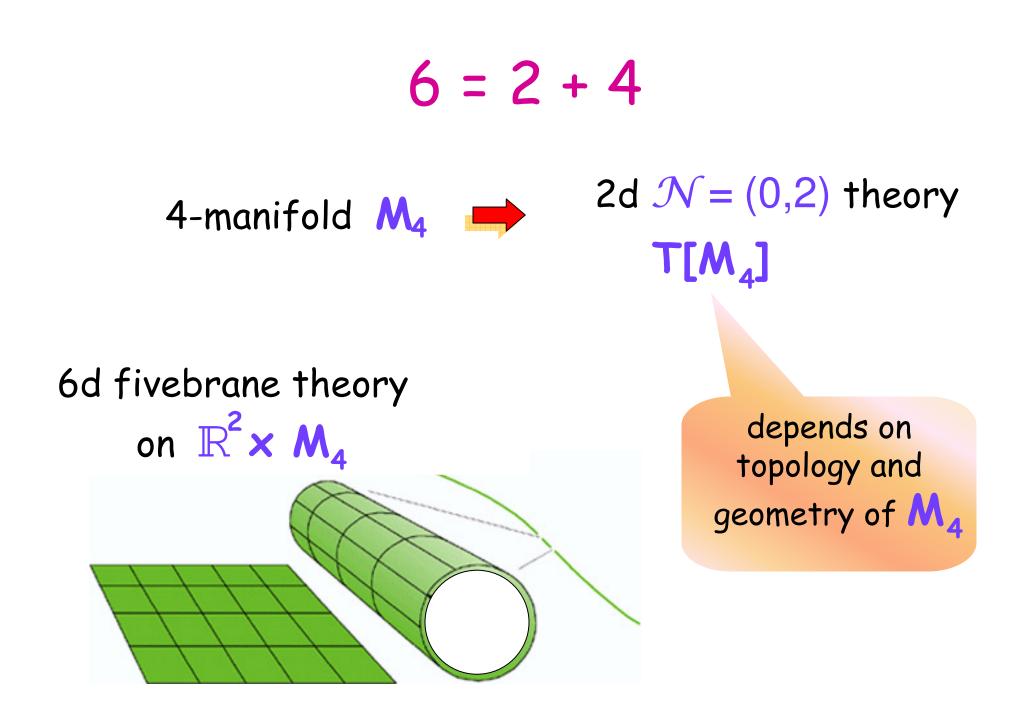
$$\mathcal{H}(\bigcirc) = \mathcal{H}_{refined BPS}^{(open)}$$

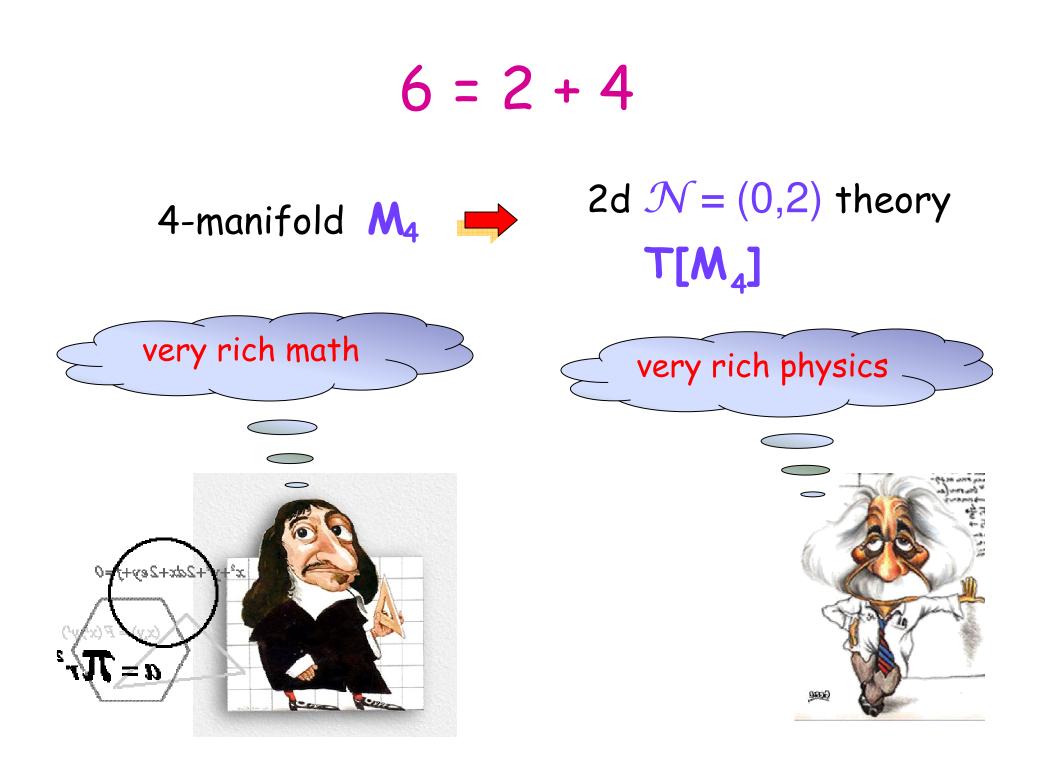


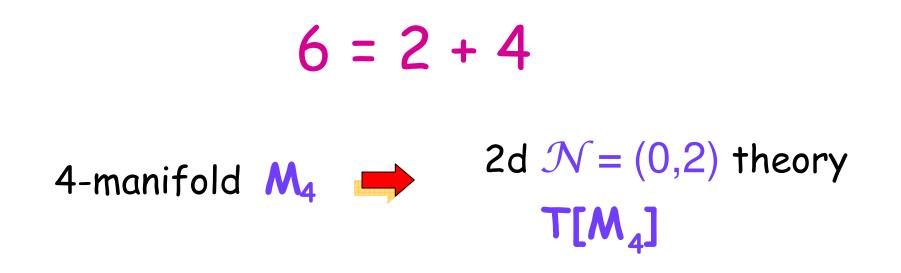
Embedding in 11 dimensions

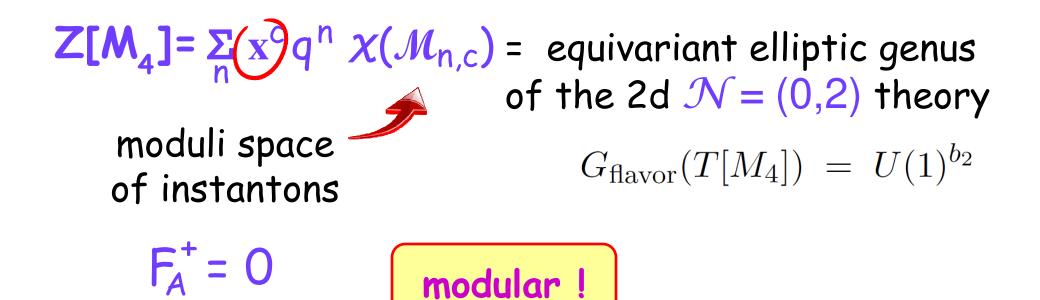


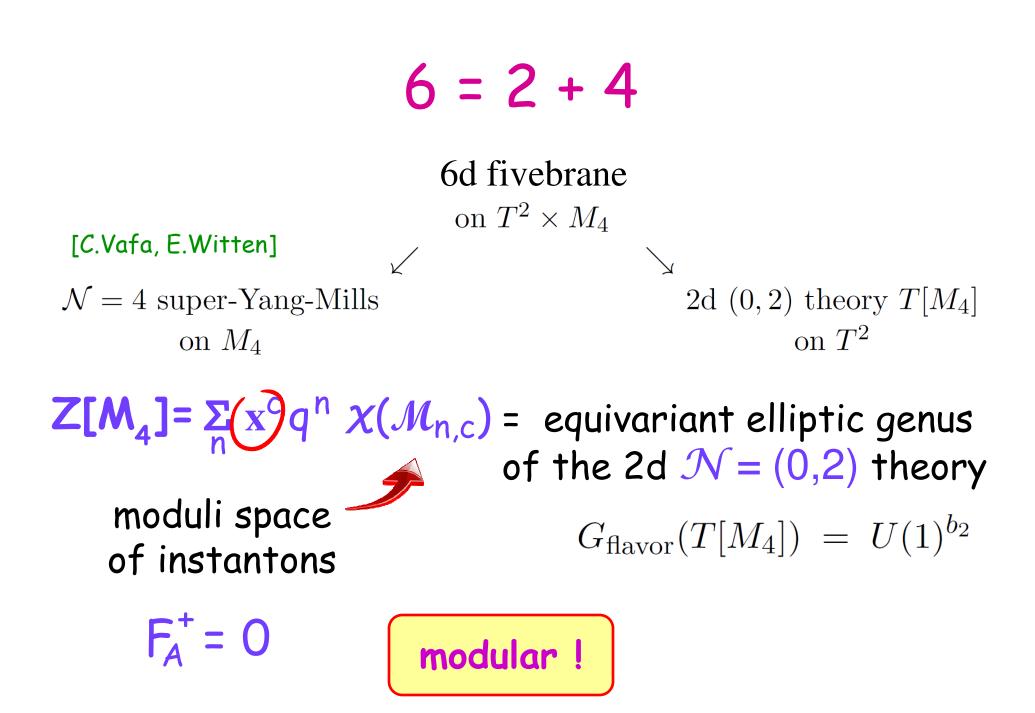


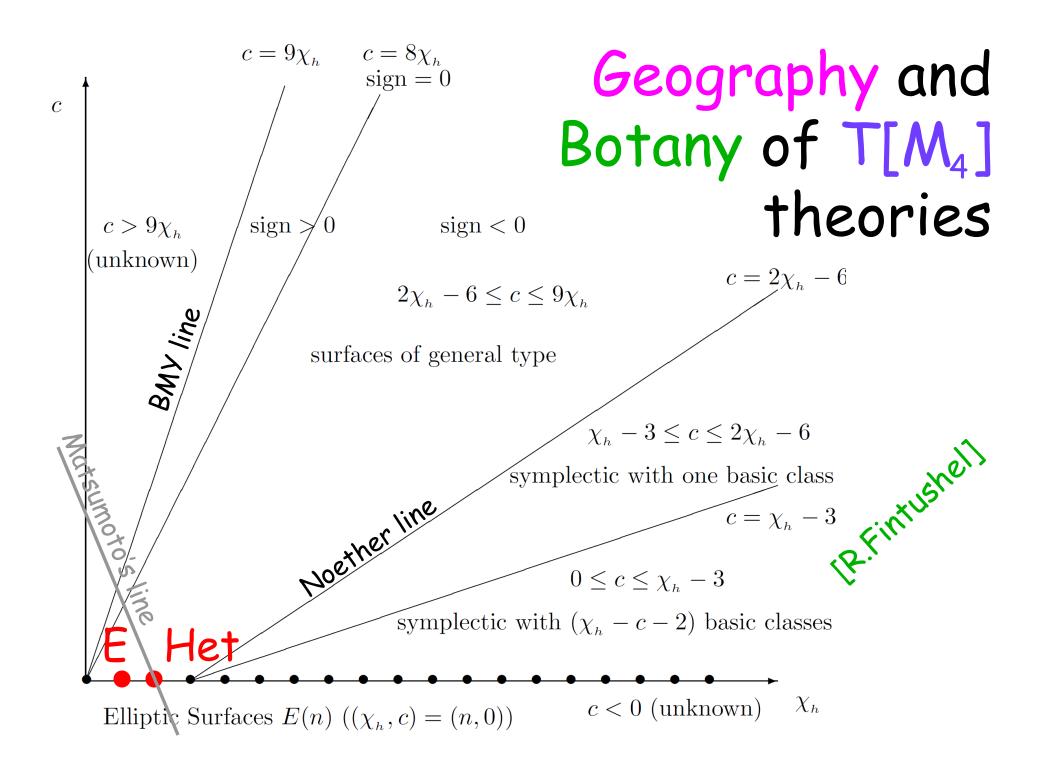












Instantons on ALE spaces

 $M_4 = A_K$ ALE space, bounded by $M_3 = L(k+1,1)$

elliptic genus of $T[A_k, U(N)]$

 $\sum_{n} x^{c} q^{n} \chi(\mathcal{M}_{n,c}) = \text{character of a level N}$ representation of affine SU(k+1) labeled by flat connection ρ on L(k+1,1)

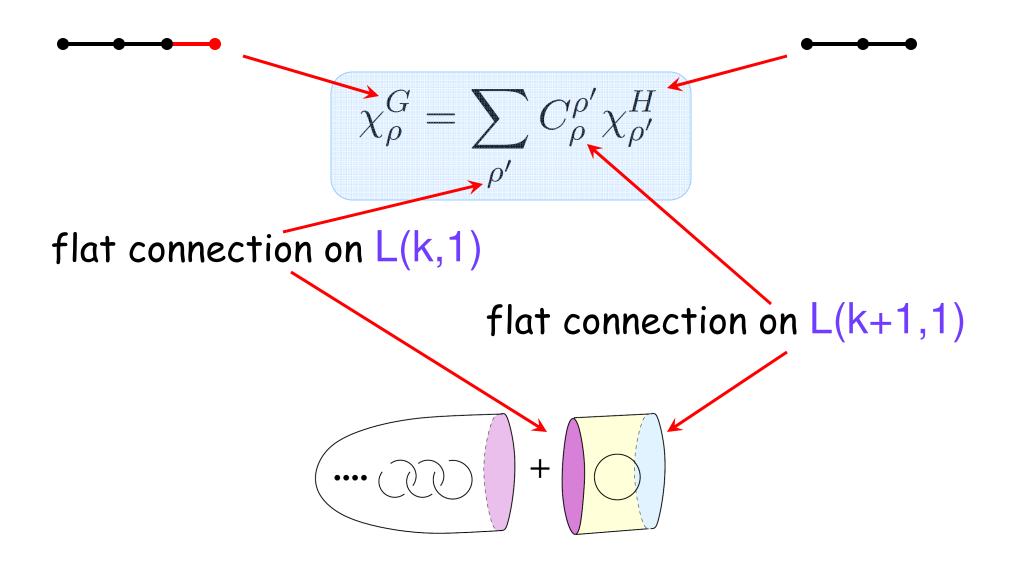
[H.Nakajima]

First New Results

 M_4 = cobordism between L(k,1) and L(k+1,1)

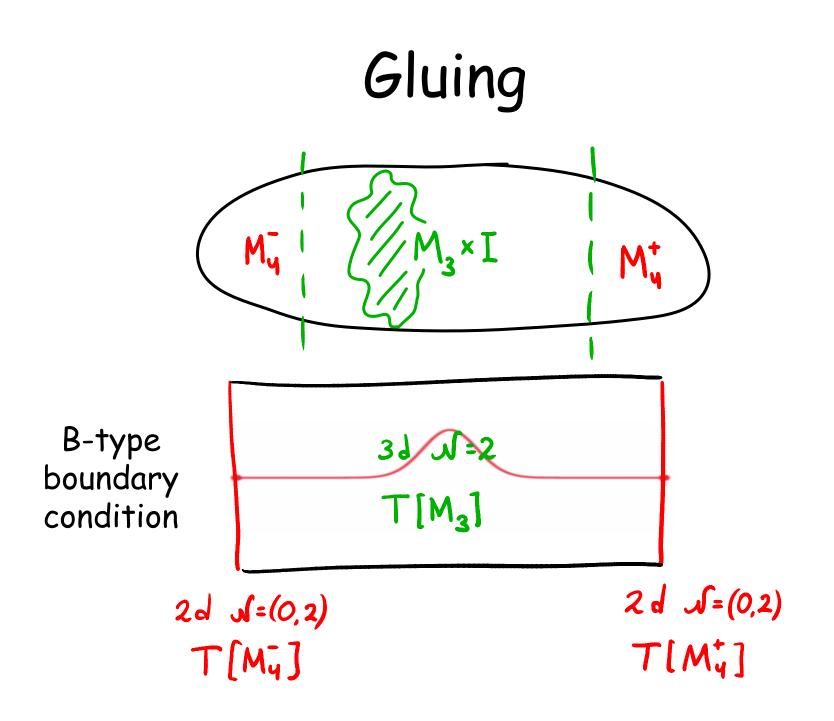
 $\sum_{n} \mathbf{x}^{c} q^{n} \boldsymbol{\chi}(\mathcal{M}_{n,c}) = \text{ branching function of a G/H coset}$ $\chi_{\rho}^{G} = \sum_{\rho'} C_{\rho}^{\rho'} \chi_{\rho'}^{H}$

First New Results

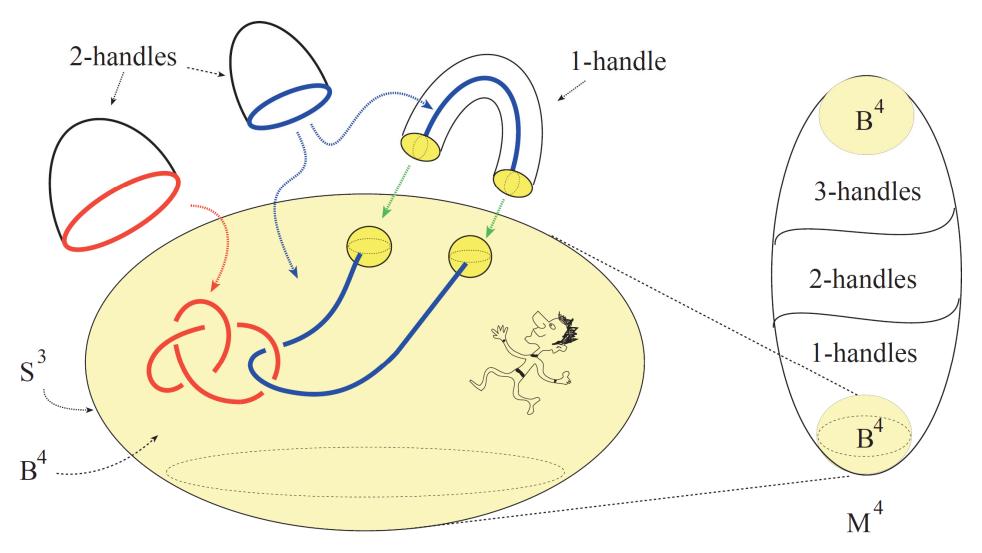


New 4-manifold invariants from 2d $\mathcal{N} = (0,2)$ theories

- $M_4 \longrightarrow T[M_4;G] \longrightarrow Z_{T[M_4;G]} = 4$ -manifold invariant
- equivariant elliptic genus = $\chi(\mathcal{M}_{inst})$
- Q-cohomology = Donaldson invariants
- moduli space of marginal couplings, etc.

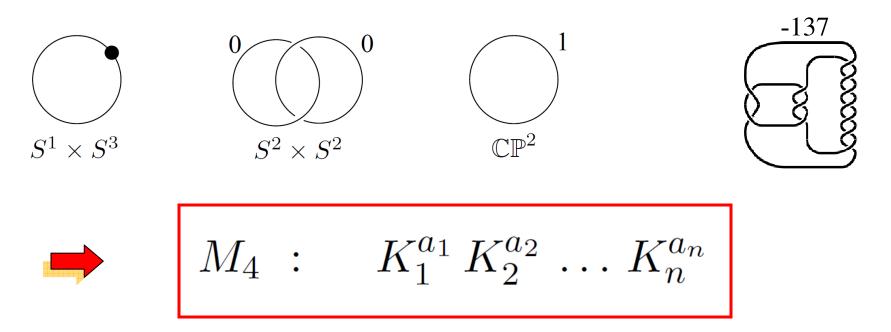


Building blocks



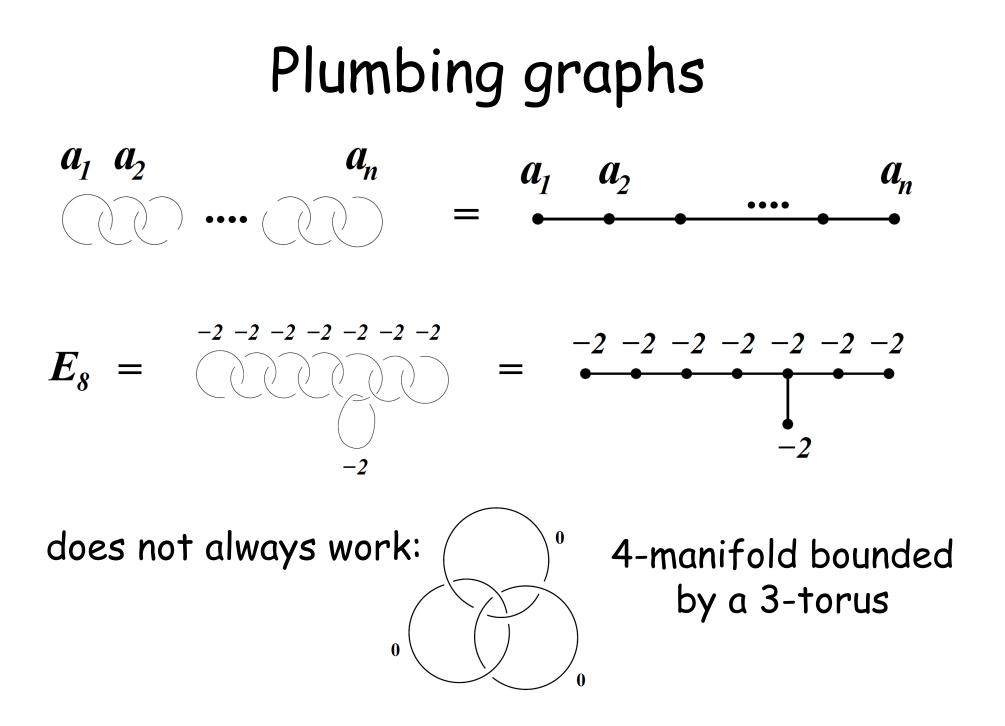
S. Akbulut, 2012

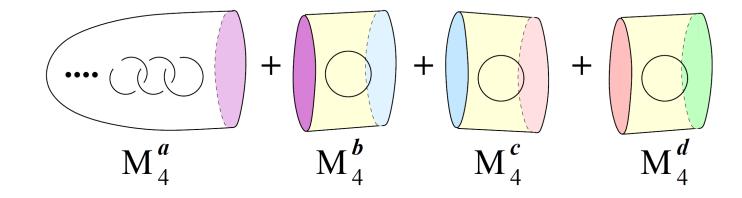
Kirby diagrams

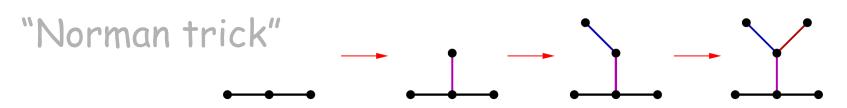


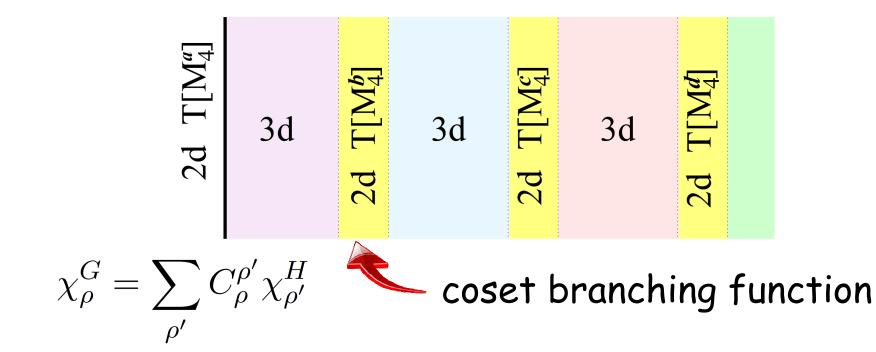
Intersection form on $H_2(M_4; \mathbb{Z})$:

$$Q_{ij} = \begin{cases} \operatorname{lk}(K_i, K_j), & \text{if } i \neq j \\ a_i, & \text{if } i = j \end{cases}$$



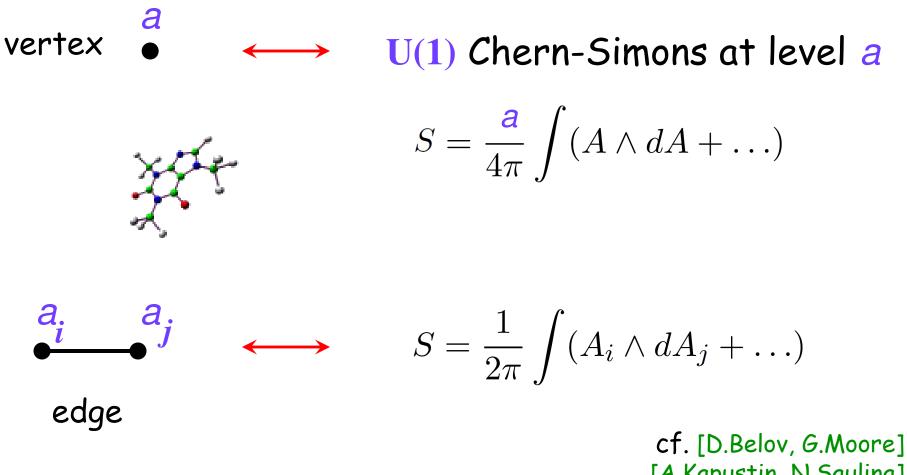






4-manifold M_4	2d (0,2) theory $T[M_4]$
handle slides	dualities of $T[M_4]$
boundary conditions	vacua of $T[M_3]$
3d Kirby calculus	dualities of $T[M_3]$
cobordism	domain wall (interface)
from M_3^- to M_3^+	between $T[M_3^-]$ and $T[M_3^+]$
gluing	fusion
Vafa-Witten	flavored (equivariant)
partition function	elliptic genus
Z_{VW} (cobordism)	branching function
instanton number	L_0
embedded surfaces	chiral operators
Donaldson polynomials	chiral ring relations

Quiver Chern-Simons theory



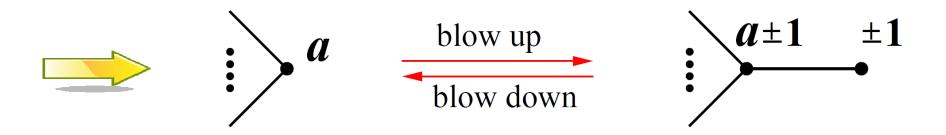
[A.Kapustin, N.Saulina] [J.Fuchs, C.Schweigert, A.Valentino]

Quiver Chern-Simons theory

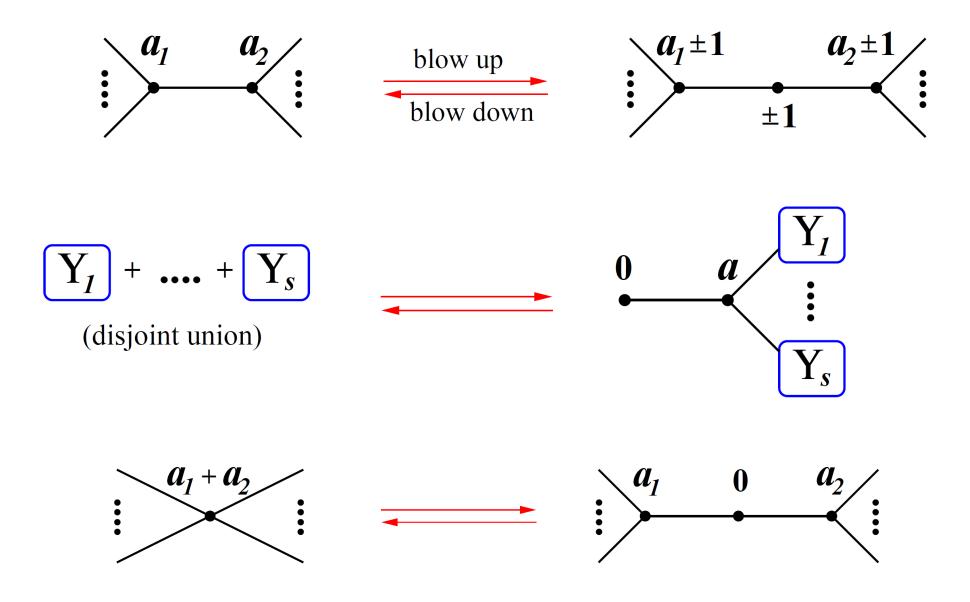
$$\underbrace{a \pm 1}_{\bullet} \underbrace{\pm 1}_{\bullet} = \frac{1}{4\pi} \int \left(\pm A \wedge dA + 2B \wedge dA + (a \pm 1)B \wedge dB + \dots \right)$$

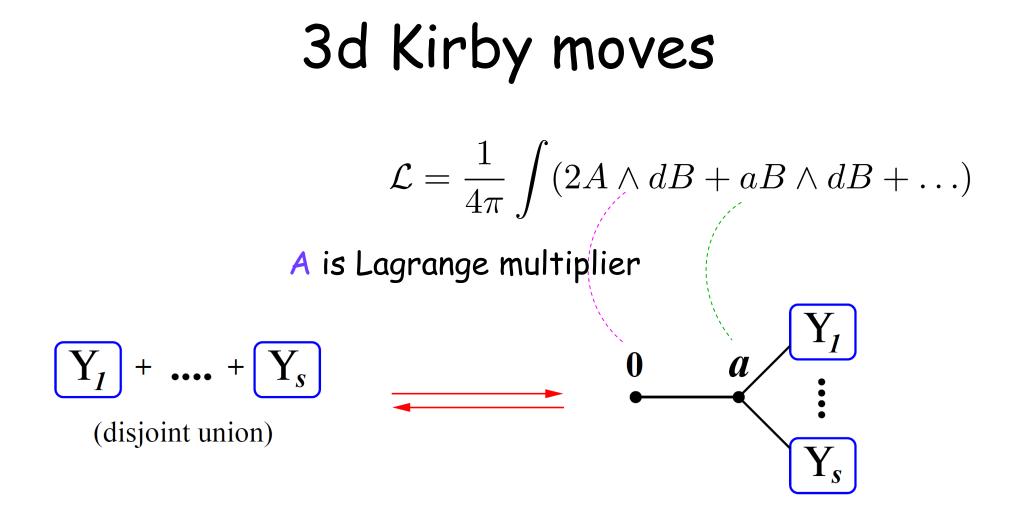
integrate out $A = \frac{1}{4\pi} \int \left(\pm B \wedge dB \mp 2B \wedge dB + (a \pm 1)B \wedge dB + \dots \right)$

$$a = \frac{1}{4\pi} \int (aB \wedge dB + \ldots)$$



3d Kirby moves



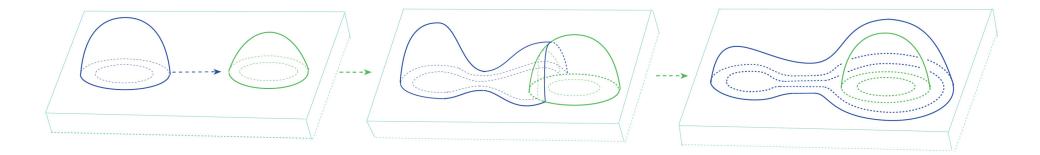


Integrating out A makes B pure gauge and removes all its Chern-Simons couplings

4d Kirby moves

identity for instanton partition function (= equivariant elliptic genus):

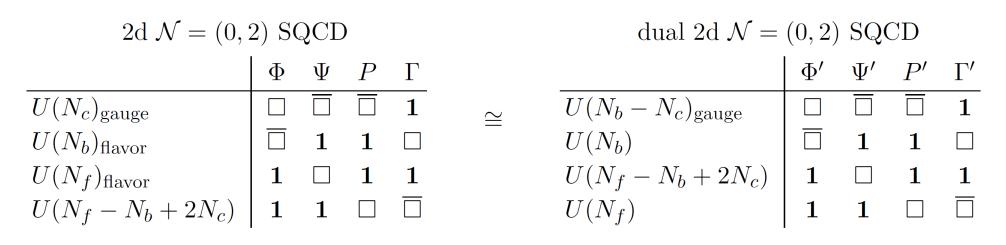
$$(q;q)_{\infty} \int dz \frac{1}{\theta(z^{-1}w)} \prod_{i=1}^{N_f} \theta(q^{\frac{1}{2}}zx_i) = \prod_{i=1}^{N_f} \theta(q^{\frac{1}{2}}x_iw)$$



4d Kirby moves

identity for instanton partition function (= equivariant elliptic genus):

New 2d $\mathcal{N} = (0,2)$ dualities from 4-manifolds



•2d (0,2) analogue of Seiberg duality
•the very first non-abelian 2d (0,2) duality

