Quirks and their Unusual LHC Signals

Roni Harnik, SLAC/Stanford

past and ongoing works with G. Burdman, Z. Chacko, H.S. Goh and T. Wizansky.

+

Advertising ongoing work by Luty et al.

Outline

- What are they?
- Why think about them?
- * Signals in two cases:
 - Very long strings anomalous muon tracks.
 - Short strings and Folded SUSY
 resonances and anomalous UE's.

Types of Quirks

* We can categorize quirks

Colored or **Non-colored** (under our QCD)

important for production, etc.

In "quirky QCD" this costs too much energy. squarks' are produced and **remain bound**!

* Now what?

Quirks will loose kinetic energy to string tension.

* Energy conservation:

production $E_k = \sqrt{\hat{s}} - 2m_{q'} \sim m_{q'}$ turning point $E = \Lambda^2 l_{max}$

$$l_{max} \sim \frac{m_{q'}}{\Lambda^2}$$
 Can be very long!

Examples:

* Lets consider two extreme choices for Λ

$\Lambda \sim \text{few eV}$	$\Lambda \sim \text{few GeV}$
$l_{max} \sim \text{meters}$	$l_{max} \sim \text{few fermi}$
Loooong strings	Excited bound state

Loooong Strings.

Long Strings

Each end hadronizes separately.
 Assume a charged hadron.

Triggering

- * Naively, this will pass a muon trigger.
- But, track curvature and direction is not consistent with a muon coming from the interaction point. May fail LVL2.
- * Possibilities:
 - Slow muon?
 - "Stable stau" trigger?
 - Timing?

Triggering

 An interestin possibility: Trigger events with tracks curving along the magnetic field.

Anything that does this is

exotic and worth keeping.

(Unless its noise?)

Microscopic Strings.

Model Building

* The hierarchy problem suggests a new symmetry.

A huge impact on collider phenomenology!

Can squarks be uncolored?

Just a Factor of 3

Standard Model

Supersymmetry

Just a Factor of 3

Standard Model

 $\times 3$

Hierarchy solved by squirks!

Folded SUSY

Motivates both colored and non-colored (s)quirks.
 e.g.

$$\tilde{q}_L = (1, 2, 3)_{1/6}$$

under $SU(3)_c \times SU(2)_L \times U(1)_Y \times SU(N)$

The squirks eventually stop.
 come back.
 oscillate.

* This system will loose energy by radiation.

 $\omega \sim \frac{\Lambda^2}{m_{\tilde{q}}} \ll \Lambda \sim m_{\rm glue}$

Soft: photon dominated

Hard: glueball dominated.

ecreases

npact

Photons vs. Glue

* Can we guesstimate
$$E_{\gamma}/E_{\rm glue}$$
 ?

 $\circ~$ Suppose the photon was massive: $m_{\gamma} \sim m_{\rm glue}$

We'd expect
$$\frac{E_{\gamma}}{E_{\text{glue}}} \sim \frac{\alpha(m_{\gamma})}{\alpha_{s'}(m_{\text{glue}})} \sim \frac{1}{20}$$

 But photon does not have a mass! The kinematic suppression due to the mass depends on impact parameter and energy. May easily be a factor few

$$\frac{E_{\rm soft}}{E_{\rm hard}} \sim \frac{m_{\tilde{q}} \Lambda^2 b^3}{\alpha_{s'}^2}$$

Settle for 10%

* Consider squirk production via a W:

* Consider squirk production via a W:

* Consider squirk production via a W:

Ongoing work w/Wizansky.

18

Ongoing work w/ Burdman et al

* Consider squirk production via a W:

* Consider squirk production via a W:

Ongoing work w/ Burdman et al

Annihilation

* Annihilation to W+photon: S/B~I (before η -cut)

 $E_{\gamma} \sim \frac{\Lambda^2}{\sqrt{\hat{s}}} \sim \frac{\Lambda^2}{m_{\tilde{q}}}$ $\sim 0.1 - 1 \text{ GeV}$

Can we see such soft photons? Can it compete with the Underlying Event? Is the "antenna pattern" visible? (This is not what the detectors were designed for!)

* Estimate:

- ~30% of photons convert to electronpositron pairs in tracking system.
- ~50% of energy reaches Ecal.

 $t \equiv x/X_0$

Possible Signals: I. High charge track multiplicity 2. Calorimetric Signal

Tracking Signal

Cheu and Parnell-Lampen (ATLAS)

"Detector Simulation"

- We simulated the photon signal according to a simple antenna model.
- Analyze soft photons with a dedicated simulation of a "toy detector" (using GEANT4).
- * Take $E_{\gamma}/E_{\text{glue}}$ as a parameter (can change event by event).

what is the sensitivity?

what are the backgrounds? min-bias? pile-up? etc.

PBS

Pattern Recognition

Pattern Recognition

(preliminary)

Summary of experimental issues

Quirks raise interesting challenges:

- * Triggers for anomalous muon like tracks.
- * Trigger for **curves along the B field**.
- Some NP searches, e.g. resonances, may be improved by an accompanying underlying event study.
- * Possible observables:
 - Multipoles of soft energy deposition in Ecal.
 - Number of charged tracks in central region....