

I.) A Bit of History

$$
N(\theta)=\frac{N_{i} n t Z^{2} e^{4}}{\left(8 \pi \varepsilon_{0}\right)^{2} r^{2} K^{2}} * \frac{1}{\sin ^{4}(\theta / 2)}
$$

Rutherford Scattering, 1911 Using radioactive particle sources: α-particles of some MeV energy

1.) Electrostatic Machines: The Cockcroft-Walton Generator

1928: Encouraged by Rutherford Cockcroft and Walton start the design \& construction of a high voltage generator to accelerate a proton beam

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Particle source: Hydrogen discharge tube on 400 kV level
Accelerator: evacuated glas tube Target: Li-Foil on earth potential

Technically: rectifier circuit, built of capacitors and diodes (Greinacher)

Problem:
DC Voltage can only be used once
2.) Electrostatic Machines:

(Tandem -) van de Graaff Accelerator (1930 ...)

creating high voltages by mechanical transport of charges

* Terminal Potential: $U \approx 12$... 28 MV
using high pressure gas to suppress discharge ($S F_{6}$)

Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle ...
... or twice?

The ,,Tandem principle ": Apply the accelerating voltage twice ...
... by working with negative ions (e.g. H^{-}) and stripping the electrons in the centre of the

Example for such a „steam engine ": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam
schematic Layout:

Energy gained after \boldsymbol{n} acceleration gaps

$$
E_{n}=n * q * U_{0} * \sin \psi_{s}
$$

\boldsymbol{n} number of gaps between the drift tubes \boldsymbol{q} charge of the particle
$\boldsymbol{U}_{\boldsymbol{0}}$ Peak voltage of the RF System
Ψ_{S} synchronous phase of the particle

[^0]
Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF
U_{0}

Alvarez-Structure: 1946, surround the whole structure by a rf vessel

Energy: ≈ 20 MeV per Nucleon $\beta \approx 0.04$... 0.6, Particles: Protons/Ions

$$
\begin{aligned}
& E_{\text {total }}=988 \mathrm{MeV} \\
& m_{0} c^{2}=938 \mathrm{MeV} \\
& p=310 \mathrm{MeV} / \mathrm{c} \\
& E_{\text {kin }}=50 \mathrm{MeV}
\end{aligned}
$$

Beam energies

Energy Gain per „Gap": $\quad W=\boldsymbol{q} \boldsymbol{U}_{0} \sin \omega_{R F} t$
1.) reminder of some relativistic formula

$$
\text { rest energy } \quad \boldsymbol{E}_{0}=\boldsymbol{m}_{0} \boldsymbol{c}^{2}
$$

$$
\text { total energy } \quad E=\gamma^{*} E_{0}=\gamma * m_{0} c^{2}
$$

momentum

$$
E^{2}=c^{2} p^{2}+m_{0}^{2} c^{4}
$$

II.) A Bit of Theory

The big storage rings: „Synchrotrons"

1.) Introduction and Basic Ideas

"... in the end and after all it should be a kind of circular machine"
\rightarrow need transverse deflecting force

Lorentz force

$$
\vec{F}=q^{*}(\not \approx+\vec{v} \times \vec{B})
$$

typical velocity in high energy machines:

$$
v \approx c \approx 3 * 10^{8} \mathrm{~m} / \mathrm{s}
$$

Example:

$$
\begin{gathered}
B=1 T \rightarrow F=q * 3 * 10^{8} \frac{m}{s} * 1 \frac{V s}{m^{2}} \\
F=q * \underbrace{300 \frac{M V}{m}} \\
\begin{array}{l}
\text { equivalent } E \\
\text { electrical field: }
\end{array}
\end{gathered}
$$

Technical limit for electrical fields:

$$
E \leq 1 \frac{M V}{m}
$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system
condition for circular orbit:

Lorentz force
centrifugal force

$$
\begin{aligned}
& F_{L}=e v B \\
& F_{\text {centr }}=\frac{\gamma m_{0} v^{2}}{\rho} \\
& \left.\frac{\gamma m_{0} v^{\gamma}}{\rho}=e\right\rangle B
\end{aligned}
$$

$$
\begin{aligned}
& \frac{p}{\boldsymbol{e}}=\boldsymbol{B} \rho \\
& \boldsymbol{B} \rho=\text { "beam rigidity" }
\end{aligned}
$$

The Magnetic Guide Field

$$
\begin{aligned}
\rho=2.53 \mathrm{~km} \quad \longrightarrow \quad 2 \pi \rho & =17.6 \mathrm{~km} \\
& \approx 66 \%
\end{aligned}
$$

rule of thumb: $\quad \frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[G e V / c]}$

field map of a storage ring dipole magnet

$$
\boldsymbol{B} \approx 1 \ldots 8 \boldsymbol{T}
$$

„normalised bending strength"

2.) Focusing Properties - Kurzer Ausflug in die klassische Mechanik

classical mechanics: pendulum

general solution: free harmonic oszillation
there is a restoring force, proportional to the elongation x :

$$
\begin{aligned}
& m * \frac{d^{2} x}{d t^{2}}=-c * x \\
& x(t)=A^{*} \cos (\omega t+\varphi)
\end{aligned}
$$

Storage Ring: we need a Lorentz force that rises as a function of the distance to \qquad ?

.................. the design orbit

$$
F(x)=q^{*} v^{*} B(x)
$$

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit
linear increasing Lorentz force
linear increasing magnetic field

$$
B_{y}=g \boldsymbol{x} \quad B_{x}=\boldsymbol{g} \boldsymbol{y}
$$

normalised quadrupole field:
\qquad

$$
k=\frac{g}{p / e}
$$

$$
k=0.3 \frac{g(T / m)}{p(\boldsymbol{G e} V / c)}
$$

LHC main quadrupole magnet

$$
\boldsymbol{g} \approx 25 \ldots 220 \boldsymbol{T} / \boldsymbol{m}
$$

what about the vertical plane: ... Maxwell

$$
\nabla \times \vec{B}=\dot{j}+\frac{\partial \vec{E}}{\partial \hat{t}}=0 \quad \Rightarrow \quad \frac{\partial B_{y}}{\partial x}=\frac{\partial B_{x}}{\partial y}=g
$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum
(remember: $\boldsymbol{B} \boldsymbol{*} \boldsymbol{\rho}=\boldsymbol{p} / \boldsymbol{q}$)

Dipole Magnet

$$
\frac{B}{p / q}=\frac{B}{B \rho}=\frac{1}{\rho}
$$

Quadrupole Magnet

$$
k:=\frac{g}{p / q}
$$

3.) The Equation of Motion:

$$
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x+\frac{1}{2!} m\left(x^{2}+\frac{1}{3!} n / x^{3}+\ldots\right.
$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:
bending, focusing etc

Example:
heavy ion storage ring TSR
*

The Equation of Motion:

* Equation for the horizontal motion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}+k\right)=0
$$

$x=$ particle amplitude
$x^{\prime}=$ angle of particle trajectory (wrt ideal path line)
*
Equation for the vertical motion:

$$
\begin{gathered}
\frac{1}{\rho^{2}}=0 \quad \text { no dipoles ... in general ... } \\
k \quad-k \quad \text { quadrupole field changes sign } \\
y^{\prime \prime}-k \quad y=0
\end{gathered}
$$

4.) Solution of Trajectory Equations

Define ... hor. plane: $K=1 / \rho^{2}+k$
... vert. Plane: $K=-k$

$$
x^{\prime \prime}+\boldsymbol{K} x=0
$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0}
$$

$$
\boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}| \boldsymbol{l}}) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin (\sqrt{|\boldsymbol{K}| \boldsymbol{l}}) \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l})
\end{array}\right)
$$

hor. defocusing quadrupole:

$$
x^{\prime \prime}-\boldsymbol{K} x=0
$$

Ansatz: Remember from school

$$
x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s)
$$

$$
M_{\text {defoc }}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} l \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right)
$$

drift space:

$$
K=0
$$

$$
x(s)=x_{0}^{\prime} * s
$$

$$
M_{d r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent , ... the particle motion in $x \& y$ is uncoupled"

Transformation through a system of lattice elements
combine the single element solutions by multiplication of the matrices

$$
\begin{gathered}
M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{B e n d} * M_{D^{*} .} \\
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s_{1}\right) *\binom{x}{x^{\prime}}_{s 1}
\end{gathered}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator, ,
typical values in a strong foc. machine:

LHC Operation: Beam Commissioning

The transverse focusing fields create a harmonic oscillation of the particles with a well defined "Eigenfrequency" which is called tune

First turn steering "by sector:"

Question: what will happen, if the particle performs a second turn?
... or a third one or ... $1 \mathbf{0}^{10}$ turns

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill 's equation"

Example: particle motion with periodic coefficient
equation of motion:

$$
x^{\prime \prime}(s)-k(s) x(s)=0
$$

restoring force \neq const,
$k(s)=$ depending on the position s $k(s+L)=k(s)$, periodic function
we expect a kind of quasi harmonic oscillation: amplitude \& phase will depend on the position s in the ring.

Amplitude of a particle trajectory:

$$
x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\varphi)
$$

Maximum size of a particle amplitude

$$
\hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}
$$

The Beta Function

β determines the beam size
... the envelope of all particle trajectories at a given position "s" in the storage ring under the influence of all (!) focusing fields.

It reflects the periodicity of the magnet structure.

The Beta Function: Lattice Design \& Beam Optics

The beta function determines the maximum amplitude a single particle trajectory can reach at a given position in the ring.
It is determined by the focusing properties of the lattice and follows the periodicity of the machine.

Beam Emittance and Phase Space Ellipse

$$
\varepsilon=\gamma(s) * x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely spoken: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!

Particle Tracking in a Storage Ring

Calculate x, x^{\prime} for each accelerator element according to matrix formalism and plot x, x^{\prime} at a given position "s" in the phase space diagram

$$
\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 1}=\boldsymbol{M}_{\text {turn }} *\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 0}
$$

A beam of 4 particles - each having a slightly different emittance:

Emittance of the Particle Ensemble:

$x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos (\Psi(s)+\phi) \quad \hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}$

Particle Distribution: $\quad \rho(x)=\frac{N \cdot e}{\sqrt{2 \pi} \sigma_{x}} \cdot e^{-\frac{1}{2} \frac{x^{2}}{\sigma_{x}{ }^{2}}}$
particle at distance 1σ from centre
$\leftrightarrow 68.3 \%$ of all beam particles
single particle trajectories, $N \approx 10{ }^{11}$ per bunch

LHC: $\quad \beta=180 \mathrm{~m}$

$$
\varepsilon=5 * 10^{-10} \mathrm{~m} \mathrm{rad}
$$

$$
\sigma=\sqrt{\varepsilon^{*} \beta}=\sqrt{5^{*} 10^{-10} m^{*} 180 \mathrm{~m}}=0.3 \mathrm{~mm}
$$

aperture requirements: $r_{0}=17 * \sigma$

5.) Luminosity

$$
R=L * \Sigma_{\text {react }}
$$

Example: Luminosity run at LHC

$$
\begin{array}{ll}
\boldsymbol{\beta}_{x, y}=0.55 \boldsymbol{m} & f_{0}=11.245 \mathrm{kHz} \\
\boldsymbol{\varepsilon}_{x, y}=5 * 10^{-10} \text { rad } \boldsymbol{m} & n_{b}=2808 \\
\sigma_{x, y}=17 \mu \boldsymbol{m} & \boldsymbol{L}=\frac{1}{4 \pi e^{2} \boldsymbol{f}_{0} n_{b}} * \frac{\boldsymbol{I}_{\boldsymbol{p} 1} \boldsymbol{I}_{\boldsymbol{p} 2}}{\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}}
\end{array}
$$

$$
\boldsymbol{I}_{p}=584 \boldsymbol{m} \boldsymbol{A}
$$

$$
L=1.0 * 10^{34} 1 / \mathrm{cm}^{2} s
$$

The High light of the year

production rate of events is determined by the cross section $\Sigma_{\text {react }}$ and a parameter L that is given by the design of the accelerator:
... the luminosity

accumulated collision rate in LHC run 1

$$
\begin{gathered}
1 b=10^{-24} \mathrm{~cm}^{2}=1 / \mathrm{mio}^{*} 1 / \mathrm{mio}^{*} 1 / \mathrm{mio} * \frac{1}{100} \mathrm{~mm}^{2} \\
R=L^{*} \sum_{\text {react }} \approx 10^{-12} \mathrm{~b} \cdot 25 \frac{1}{10^{-15} \mathrm{~b}}=\text { some } 1000 \mathrm{H}
\end{gathered}
$$

The particles are "very small"

The luminosity is a storage ring quality parameter and depends on beam size (β !) and stored current

$$
L=\frac{1}{4 \pi e^{2} f_{0} \mathrm{~b}} * \frac{I_{1} * I_{2}}{\sigma_{x}^{*} * \sigma_{y}^{*}}
$$

The LHC Mini-Beta-Insertions

mini β optics

Mini-Beta-Insertions in phase space

A mini- β insertion is always a kind of
special symmetric drift space.
\rightarrow greetings from Liouville
the smaller the beam size the larger the bam divergence

... clearly there is an
... unfortunately ... in general high energy detectors that are installed in that drift spaces

III. The Acceleration

Where is the acceleration?
Install an RF accelerating structure in the ring:

B. Salvant
N. Biancacci

The Acceleration \& "Phase Focusing"

 $\Delta p / p \neq 0$ below transitionideal particle •
particle with $\Delta p / p>0$ - faster
particle with $\Delta p / p<0$ • slower

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"
oscillation frequency: $f_{s}=f_{\text {rev }} \sqrt{-\frac{h \alpha_{s}}{2 \pi} * \frac{q U_{0} \cos \phi_{s}}{E_{s}}} \quad \approx$ some $\boldsymbol{H z}$

... so sorry, here we need help from Albert:

$$
\gamma=\frac{E_{\text {total }}}{m c^{2}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \longrightarrow \frac{v}{c}=\sqrt{1-\frac{m c^{2}}{E^{2}}}
$$

v / c

... some when the particles do not get faster anymore
.... but heavier!
kinetic energy of a proton

The Acceleration above transition

ideal particle

particle with $\Delta p / p>0$ - heavier
particle with $\Delta p / p<0 \bullet \quad$ lighter

Focussing effect in the longitudinal direction
keeping the particles close together ... forming a "bunch"
... and how do we accelerate now ???
with the dipole magnets!

The RF system: IR4

Nb on Cu cavities@4.5K (=LEP2)
Beam pipe diam. $=300 \mathrm{~mm}$

Bunch length (4б)	ns	1.06
Energy spread (2 $\sigma)$	10^{-3}	0.22
Synchr. rad. loss/turn	keV	7
Synchr. rad. power	kW	3.6
RF frequency	M	400
	Hz	
Harmonic number		35640
RF voltage/beam	MV	16
Energy gain/turn	keV	485
Synchrotron frequency	Hz	23.0

And still...
 The LHC Performance in Run 1

... und wozu das alles??
High Light of the HEP-Year natuerlich das HIGGS

ATLAS event display: Higgs => two electrons \& two muons

[^0]: * acceleration of the proton in the first gap
 * voltage has to be "flipped "to get the right sign in the second gap \rightarrow RF voltage
 \rightarrow shield the particle in drift tubes during the negative half wave of the RF voltage

