
Minutes of the 23Minutes of the 23Minutes of the 23Minutes of the 23rdrdrdrd PyHEADTAIL PyHEADTAIL PyHEADTAIL PyHEADTAIL

Development MeetingDevelopment MeetingDevelopment MeetingDevelopment Meeting

25/07/2014

List of attendees: H. Bartosik, P. Baudreghien, A. Lasheen, K. Li, E. Metral, G.

Rumolo, A. Oeftiger, E. Shaposhikova, H. Timko

Follow up from previous meetings, approval of the last minutes and arising

matters

A quick summary of the last meeting which was dedicated to the instabilities in

the transverse plane: Michael Schenk presented his work on the code along with

benchmarks and convergence studies. Benchmarks were done against HEADTAIL

and convergence studies were carried out mainly with respect to the number of

slices necessary to resolve the respective wake fields. The transverse tracker has

been redesigned and equipped with RFQ detuning.

Agenda

1. Basic longitudinal structure of PyHEADTAIL:

The PYlongitudinal branch is now the master branch for the longitudinal

aspects of PyHEADTAIL. A version numbering scheme has been applied and

described. The original design of the longitudinal tracking has been changed.

The main components for now are tracking in multiple harmonic systems

over several RF stations, intensity effects, post-processing tools and

documentation. A LLRF module has been added. For now, it includes only

phase noise but feedback and phase loops should also be provided soon. The

main class performing longitudinal tracking is the RingAndRFSection class. It

combines drifts and kicks according to the equations of motion presented

HEADTAIL Meeting #21. Drifts can take into account up to second order in

slippage factor. Kicks can apply multiple harmonic and accelerating RF fields.

Momentum programs can be provided for each RF station. Of course, all RF

stations should share the momentum compaction factor. Example files for

longitudinal tracking and computation of intensity effects can be found in the

_EXAMPLE_MAIN_FILES folder.

Documentation has been started for PYlongitudinal. Examples of using Sphinx

documentation were shown and explained and a link to the documentation

page of PYlongitudinal was provided.

In conclusion, PYlongitudinal has been tested and is ready to use. Any issues

or requests should be directed to Danilo Quartullo.

A merge can take place when a common interface has been agreed on.

2. Intensity effects in the longitudinal plane:

The computation of impedance effects for now requires longitudinal

discretization of the beam. In the general jargon this is called slicing. A slices

class exists to perform this task. An additional slicing method has been added

to the available methods which is basically the NumPy 1d histogram function

which seems to be sufficient for computation of longitudinal intensity effects.

New methods such as computation of the beam spectrum and the beam

profile derivative have been added. Different impedance sources are available

and can be imported either as impedance or as wake fields for calculations in

frequency domain or in time domain, respectively. So far, resonator

impedances, travelling wave structures and constant imaginary Z/n type

impedances have been implemented. The time domain calculation is done

using a convolution of the beam profile with the wake fields, either via a

matrix multiplication which can be used in general or via the NumPy

convolve function which can be used only for constant slicing. In frequency

domain, the beam spectrum is multiplied with the impedance and the kicks

are obtained via an inverse FFT. It was noted that space charge could perhaps

be modelled by a high frequency resonator; this would give a constant

imaginary Z/n and introduce resistive wall impedance as well, whereas pure

imaginary Z/n models would give non-physical solutions.

In conclusion, several options for computing intensity effects are now

available. These should still be tested. Simulations have been started for the

PSB and the results will help to benchmark the implementations. Example

files on how to include intensity effects in the simulations are provided in the

repository branch. Forthcoming developments include code clean-up,

implementation of the MuSiC method (see HSC Section Meeting #14) and

bunch generation taking into account multiple RF and intensity effects.

Kevin Li, 29/07/2014

