Intensity effects in the longitudinal plane

A. Lasheen, D. Quartullo 23rd HEADTAIL Development meeting – 25/07/14

Outline

- □ Slicing (beams.slices)
 - □ Slicing methods
 - Extra methods
- Impedance (impedances.longitudinal_impedance)
 - Coordinates
 - General methods
 - Sources
 - □ Induced voltage calculation
- Examples
- Conclusion

Forthcoming developments

Slicing

DEFINE SLICES----pumber slices = 100

Slicing – Slicing methods

slice_constant_space	<pre>slice_constant_space_histogr am</pre>	slice_constant_charge
 Profile obtained through the method developed by Hannes and Kevin before, by sorting the particles and counting the particles 	 Profile obtained from the numpy histogram function 	 Bin size adapted to have the same number of particles in each bin
 Needed in order to use the compute_statistics method in slice module 	- Only returns the number of particles per slice with a constant bin size for a constant frame size	 Difficult to compute induced voltage in frequency domain with this slicing

Slicing – Extra methods

□ Slicing can be done in θ , z and t (t is preferable in order to calculate induced voltage)

□ Other methods are included in order to calculate:

Beam spectrum

Beam profile derivative

Statistics

Impedance

Examples – PS Booster

Impedance sum

Impedance - Coordinates

- The coordinates used are:
 - □ Time for wakes
 - □ Frequency for impedances
- \Box Wakes are expressed in t rather than in z in order to be independent of β in case of acceleration. This allows to pre-process the wakes and gain time during tracking.
- One can still use induce voltage calculation in other coordinates, implying a recalculation of the wake every turn.

Impedance – General method

Impedance – General method

Preprocessed if slicing and wakes are calculated in time, and impedance in frequency

Impedance – Sources

Resonators (wakes and impedances)

□ Travelling wave cavities (wakes and impedances)

Warning: high Q resonators and cavity models require a very small frequency resolution

Tables

- Constant imaginary Z/n
 - □ Two methods are possible, to calculate: as any other impedance with inverse FFT, or via the derivative of the line density
 - Warning: Noise might be an issue to smooth, but all cases of simulations does not allow a simple smoothing...
- Different sources can be summed for faster tracking if they have the same resolution, or used one by one.

Impedance – Induced voltage

□ Time domain calculation can be done with two methods:

Matrix convolution (method by Hannes) that works for the constant_space and constant_charge slicing methods
 The numpy convolve function that works for constant_space and constant_space_histogram slicing

Frequency domain calculation

Inverse fft of the bunch spectrum times the impedance

For the constant imaginary Z/n, the beam profile derivative is multiplied by the impedance

Conclusion

□ A lot of options are possible:

- Diverse coordinates
- Diverse options for the slicing
- Diverse options for the impedance sources
- Diverse methods to calculate the induced voltage and track

□ Some are faster/more complete than the other:

- The time/frequency coordinates are good for preprocessing of the wakes/impedance
- As a rule of thumb, numpy histogram and convolve functions are faster to calculate
- The constant_space and constant_charge slicing are useful in the case where you need to compute statistics for each slice (via the sorting)

Examples – PS Booster

Examples – PS Booster

Impedance sum

Examples – Files in GitHub

Link to GitHub

- **Examples in files:**
 - □ _Wake_impedance.py
 - Impedance_ps_booster.py

Forthcoming developments

- Working on the correlation between the beam and slice classes
- Cleaning and optimizing
- Documentation
- Testing M. Migliorati's method (MuSiC code)
- Bunch generation matched with intensity effects
- Smoothing