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Introduction

Motivation
• The two beam module will be installed in September this year.
• Request from CTF3 for input regarding a proposed design of the new TBTS.
• Due to the low energy (∼150MeV) aperture restrictions could lead to large

beam losses resulting in poorer experimental results.
• Found a solution that seems to perform better then the previous proposal.
• The beam line should be equipped with correctors and BPMs.
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Current lattice

• Beta functions in drift regions are parabolas.

• The envelope has to be large at the triplets due to drift length of∼ 5 m.

Old optics
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Requirements of the lattice

Properties of lattice
• The lattice consists of:

• A horizontal dogleg.
• Straight section with TBTS. + 1 old PETS.
• Momentum determination at the end.

• The needed functionalities are:

1 Zero dispersion in straight (TBTS) section.

2 Ensure small envelope throughought lattice. Particularly in PETS sections.

3 Narrow horizontal beam on MTV screen for accurate momentum determination.

4 Flexibility and modular design are not strictly necessary, but imposed on the design.
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Working hypotheses

PETS
• The most decelerated particles experience the voltage V =

(R′/Q)ωF(λ)ηΩ
4vg

L2I (linac convention).

• → Scale deceleration according to V = 1.4MV
(

L
0.23m

)2 I
101A .

• For primed PETS, we assume energy conservation - means that the primed PETS decelerate an additional half the decelerating
voltage of the first PETS (since the first PETS signal is split into both the final PETS.).

• Assume that the PETS wake behaves as in an RF cavity (on phase).

Steering
• Linear transverse optics.

• Emittance 150 µm. CAUTION - this is smaller than measured.

• Initial twiss parameters βx = 15 m, βy = 10 m, αx = 0, αy = 0.

• The TBM quadrupole movers can be used as correctors.

• BPM resolution is neglected.



Optics functions

Beta functions
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Ideally..
• The correctors and BPMs should be placed in regions with large β functions - the leverage of the correction scales with it.



Optics functions

Phase advance
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Ideally..
• The correctors and BPMs should be placed in regions with large β functions - the leverage of the correction scales with it.

• The phase advance between correctors should be approximately 0.25 (in the units on the plot).



Optics functions

Dispersion
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Ideally..
• The correctors and BPMs should be placed in regions with large β functions - the leverage of the correction scales with it.

• Dispersion is completely cancelled with the updated longitudinal positions



Intervention

• This setup requires:
• Moving the first triplet (3 quads).
• Moving the old PETS tank.
• Moving one magnet from the final triplet.
• Installing a new quadrupole.
• Installing a the two beam module.
• A soft requirement is re-alignment of some quadrupoles.



Optics with realistic PETS currents

New optics, without current
dependent matching
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Optics with realistic PETS currents

New optics, with current dependent
matching
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New optics, with current dependent
matching
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Varying twiss parameters

• Simulate effects of unknown incoming twiss parameters.

• Nominal: βx=15m and βy=10m, αx = αy = 0.

• Vary βx,y by±20% and αx,y in the interval [-3;3] in a rectangular grid.

• Observe effect on beta beating. Acceptable
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Steering recipe

• Calculate the response matrix: The response of the lattice with respect to changes in the
correctors.

• b = R · c.
• To apply corrections for random misalignments c = pinv(R) ∗ b.
• Notice that correctors give angular kicks.
• Notice that BPMs record spatial positions.
• xfinal = M · xinitial (xinitial,final are vectors of positions and angles)
• bj =

∑
i Mj

1,ixinitial(i)



• Inject particles with an offset in angle and position. Put it on the phase space ellipse corresponding to the incoming twiss parameters.

• Used offset corresponds to 150µm·rad (nominal emittance).

• Propagate beam and correct the orbit.

• Observe needed corrector strengths.

• Maximum needed strength: 170µrad·GeV→ Bl = pcθ/qc = 5.67Tm

• The strength scales as the root of the offset magnitude, A, so the strength is 5.67 · 10−4Tm ·
√

A/150µm rad.

−3000 −2000 −1000 0 1000 2000 3000
−250

−200

−150

−100

−50

0

50

100

150

200

250

Positional offset [µm]

A
ng

ul
ar

 o
ffs

et
 [µ

ra
d]

 

 
Horizontal
Vertical



• Inject particles with an offset in angle and position. Put it on the phase space ellipse corresponding to the incoming twiss parameters.

• Used offset corresponds to 150µm·rad (nominal emittance).

• Propagate beam and correct the orbit.

• Observe needed corrector strengths.

• Maximum needed strength: 170µrad·GeV→ Bl = pcθ/qc = 5.67Tm

• The strength scales as the root of the offset magnitude, A, so the strength is 5.67 · 10−4Tm ·
√

A/150µm rad.
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Figure: Horizontal orbits.
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Figure: Horizontal orbits.



• Inject particles with an offset in angle and position. Put it on the phase space ellipse corresponding to the incoming twiss parameters.

• Used offset corresponds to 150µm·rad (nominal emittance).

• Propagate beam and correct the orbit.

• Observe needed corrector strengths.

• Maximum needed strength: 170µrad·GeV→ Bl = pcθ/qc = 5.67Tm

• The strength scales as the root of the offset magnitude, A, so the strength is 5.67 · 10−4Tm ·
√

A/150µm rad.
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Figure: Horizontal corrector strengths.

0 1 2 3 4 5 6 7
−200

−150

−100

−50

0

50

100

150

200

Phase of incoming beam [rad]

S
tr

en
gt

h 
of

 v
er

tic
al

 c
or

re
ct

or
s 

[G
eV

*µ
ra

d]

 

 
Corrector 1
Corrector 2

Figure: Vertical corrector strengths.



Quadrupole alignment errors.

• Assume that all quadrupoles after the first corrector have got the same amplitude of
random Gaussian misalignment.

• Use 100µm RMS misalignment, 10000 machines.
• The scaling of offsets and corrector strengths is linear in the misalignment amplitude→
• Bl3σ,max = 5.00 · 10−4T m · [RMS quadrupole misalignment/100µm].
• ∆x3σ,max = 1401µm · [RMS quadrupole misalignment/100µm].
• 3σx(PETS downstream) = 1230µm · [RMS quadrupole misalignment/100µm].
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Figure: RMS offsets of beam.



Quadrupole alignment errors.

• Assume that all quadrupoles after the first corrector have got the same amplitude of
random Gaussian misalignment.

• Use 100µm RMS misalignment, 10000 machines.
• The scaling of offsets and corrector strengths is linear in the misalignment amplitude→
• Bl3σ,max = 5.00 · 10−4T m · [RMS quadrupole misalignment/100µm].
• ∆x3σ,max = 1401µm · [RMS quadrupole misalignment/100µm].
• 3σx(PETS downstream) = 1230µm · [RMS quadrupole misalignment/100µm].
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Figure: RMS corrector strengths.
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Conclusions

• The new lattice is flexible and fulfills the requirements.
• The correctors are strong enough to steer the beam ,.
• But it depends on the incoming beam quality.
• We can set limits on alignment imperfections with the response matrix approach. ,

• Some quadrupoles will be re-aligned to improve beam transport. The RMS alignment is
expected to be better than 100µm.

• All quadrupole currents are acceptable (in the linear approximation).
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