
Data Acquisition System for HF Radiation Monitors

S. Dugad, T. Grassi, A. Kaminsky, S. Lokhandwala, R. Shukla

HF Radiation Monitors

OBJECTIVE:

- Long term monitoring of the absorbed dose and neutron flux to estimate the expected degradation of fibers, electronics, PMTs and to measure the shielding efficiency.
- Additional monitoring of the HF itself performance for future re-calibration etc.
- Background (beam losses) monitoring.

System for a radiation monitoring in the CMS HF area

CONTENTS:

- Introduction of HF Radiation Monitor Detectors
- Present System
- Proposal and requirements for upgrade
- Summary of components
- Firmware Development
- Course of action

*Ref: http://test-kaminsky.web.cern.ch/test-kaminsky/cooling_upg/HCAL/hcal/HF_RAMON_Safety.pptx

HF Radiation Monitors – neutron detectors (NRM-14)

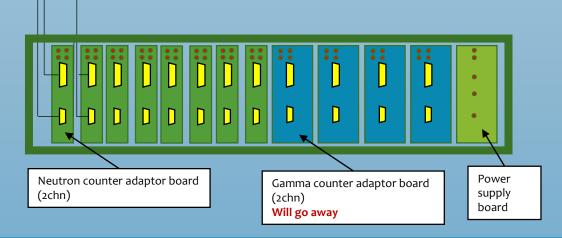
16 neutron monitors: NRM-14 for neutron flux measurements

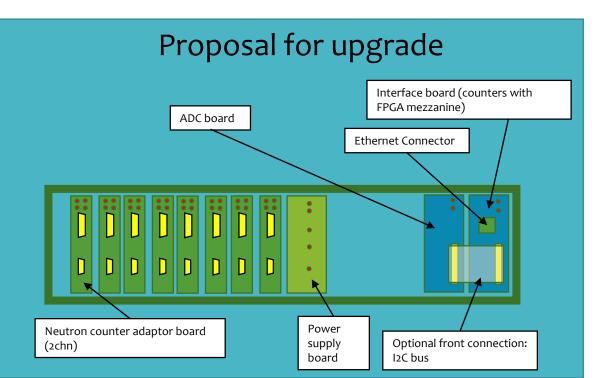
- 4x2 monitors inside every HF shielding
- 4x2 monitors outside every HF shielding

Physics properties	NRM-14 (neutrons)
Rank of measured energies	0.5eV 15MeV
Measured parameter	Fluence (flux) rate
Rank of measured values	1e-2 1e+5 n/(cm²/sec)
Sensitivity	1.3 2.3 (n/cm²)/count
Isotropism	50%
Size (with capsule & moderator)	dia155x330 mm
Weight (with moderator)	5 kg

Power requirements	NRM-14
Power supply	20 24 V
Current (DC)	<25 mA
Signal amplitude	70 mA
Pulse duration	0.5e-6 sec

Counters specification

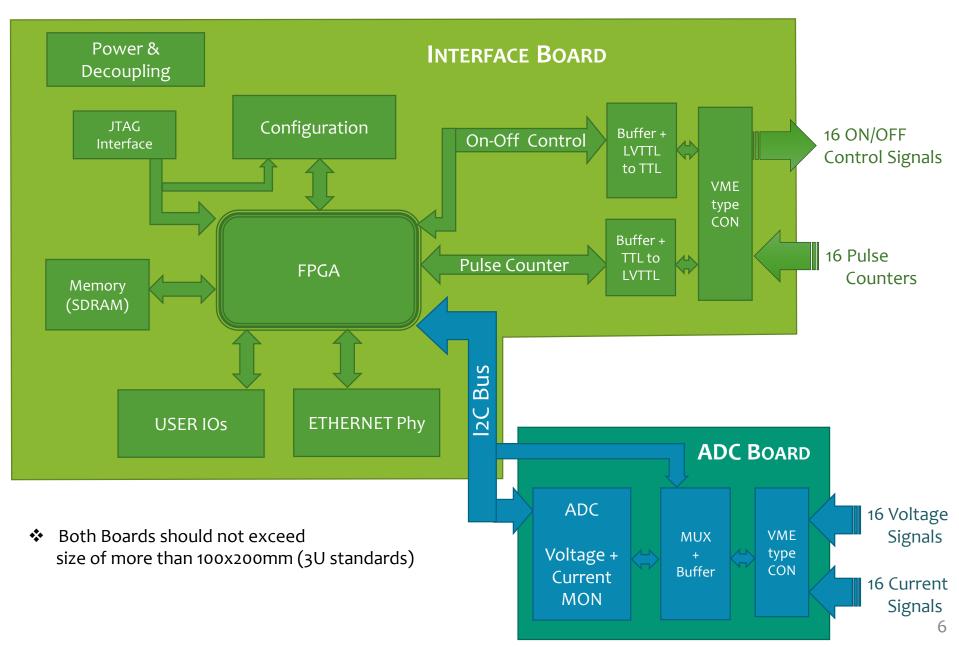

*Ref: http://test-kaminsky.web.cern.ch/test-kaminsky/cooling_upg/HCAL/hcal/HF_RAMON_Safety.pptx


Requirements of DAQ for monitoring of Neutron Counters

- 16 channels:
 - Control ON/OFF signaling (TTL)
 - 32-bit count of asynchronous pulses (TTL), rate 1MHz
 - Voltage and Current Monitoring (Range: 0-10V)
- Readout: Ethernet (low luminosity the readout rate : 1/10s, at high luminosity : 1/sec)
- Present system is monitored through NI-DAQ cards with PCI interface.
- PCI is phased out at CMS (moreover, NI cards are 5V PCI) and drivers are only 32bits.
- The new FPGA based system aims to provide more flexibility along with an Ethernet interface.

Present System

To National Instruments ADC/counting/IO boards



- Removal of Gamma counter boards frees 4 double slots in the crate. This allows us to place the new interface board(s) directly to the crate.
- Digital signals from/to neutron adaptor boards will be routed to new backplane board connector using single wires.
- Analog signals from neutron adaptor boards will be routed to new backplane board using single wires.
- ADC board is connected to Interface board via backplane lines (carrying I2C signals) (optionally: by the flat cable)

*Ref: http://test-kaminsky.web.cern.ch/testkaminsky/cooling_upg/hfradmon/NR_HFRM _2.pptx 5

Block Diagram of Proposed DAQ

Interface Board: Summary of Components

Components specifications:

- FPGA : Xilinx SPARTAN 6 LX16
- Flash PROM:
 - **XCF04S:** 4M-bit Platform FLASH PROM (Xilinx Recommended) and/or
 - **NP5Q128A:** 128-Mbit, Phase Change Memory (PCM) with 66MHz SPI Bus Interface
- Ethernet LAN Phy: LXT971A: MII interface, 10/100 Ethernet Transceiver
- Digital Buffers: **74LVC245**: 8-channel TTL-LVTLL Buffer, Propagation time: 4ns
- Power Modules for FPGA : 3.3V, 2.5V, 1.8V, 1.2V (Linear Technologies: LTC3633, LTC3619)
- Connectors:
 - **VME based** for backplane connection : 96 contact connectors (ERNI 533402)
 - Ethernet : **RJ-45 with Magnetics** : HALO Electronics HFJ11-2450E-L12
 - o I²C Header
 - o GPIO Connector
- SDRAM: ISSI's IS42S16160G: 16Mx16bits (256Mbit), up to 166MHz clock. .
- I²C Buffer: P82B96: I²C -bus logic signals levels convertor, improves noise immunity on longer bus lengths.

ADC Board: Summary of Components

Requirements:

Each of 16 neutron adapters produces 2 analog signals: "detector voltage" and "detector current".

- Both signals are voltages in range 0 to 7 volts, output resistance $-k\Omega$
- ADC accuracy should be not worse then 0.1 V

The need for separate ADC board is mainly due to arrangement of connections from the backplane.

- ***** Components specifications:
- ADC: MAX127 : 8-channel, 12-bit SAR-ADC, +10V compatible analog input signals, I²C controlled
- Analog Multiplexers: LTC1380: 8-channel, CMOS analog MUX, max analog input 15V, I²C controlled
- Analog Buffer
- I²C Buffer: **P82B96**: I²C -bus logic signals levels convertor, improves noise immunity on longer bus lengths.
- All components on ADC board will be controlled by I²C protocol by the FPGA on Interface board acting as Master
- Optionally, a micro-controller can be provided on the ADC board which will handle the control of ADC and analog mux. on one side and communicate to FPGA on other (*acting as bridge*).

This functionality can also provide room for expansion of multiple such cards.

Firmware Development

Main modules required for Interface board DAQ:

- 16 channel , 32-bit, Scalar asynchronous counters
- 16 channel on/off and interlock control
- I²C Master core for ADC board control
- Ethernet MAC core with UDP
- SDRAM memory control core

✓ We have already implemented the following cores for different applications with SPARTAN 6 FPGA \checkmark

 \checkmark

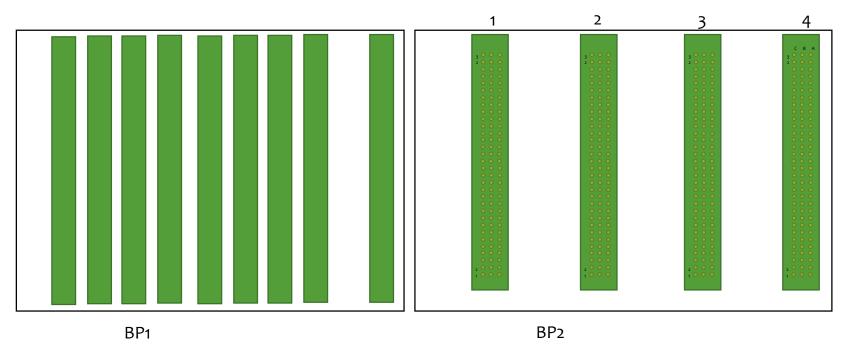
Course of Action

- 1. Circuit Schematic Design : Estimated time 2 3 weeks
- 2. PCB Design : Estimated time 3 weeks
- 3. PCB Manufacturing : Estimated time 4 weeks (Usual time taken by PCB manufacturing company)
- 4. Firmware Development: Estimated time 2 weeks (Can be done during PCB Manufacturing)
- 5. Implementation & Testing : Estimated time 2 3 weeks (After arrival of PCB)

Approx. time for completion of Project : 3 Months

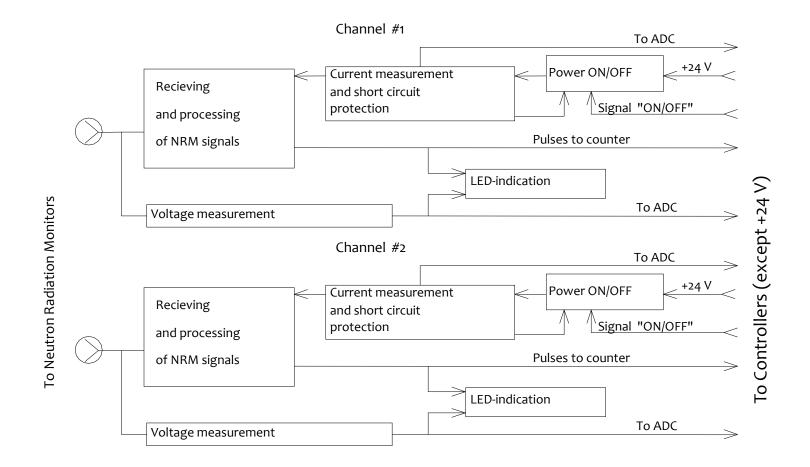
Thank You

BACK-UP SLIDES


New backplane boards

BP1 is a "shortened" version of existing backplane. BP2 is to be produced (by CERN/MSU)

BP2 will be equipped by 4 "VME type" 96 contact connectors (for example ERNI 214836). The corresponding connectors for interface board is ERNI 533402


Voltage at backplane2: +5V and +12V.

Digital signals from the neuron counters will be routed to BP2/4, the analog ones will go top BP2/3

*Ref: http://test-kaminsky.web.cern.ch/test-kaminsky/cooling_upg/hfradmon/NR_HFRM_2.pptx

HF Radiation Monitors – Electronics

Structural scheme of the NRM adapter