

ATLAS Status

Report

PHYSICS HIGHLIGHT

TNO F IKODA

LSI & RUNZ PREPARATION

119th OPEN LHCC 24th June 2014 CERN, Geneva.

Daniel Dobos (CERN)
On behalf of the ATLAS Collaboration

Fapers since last one Lactings Notes

Since last LHCC Status report:

52 papers18 CONF notes

A LARGE FRACTION OF THE RUN-PRESULTS NOW FINAL

CAN COVER HERE ONLY FEW OF THE HIGHLIGHTS

NEW RECORD OF PAPERS PER MONTH

ODSCHWAIIOM OF ARXIVALIONO32

- 4.9 fb⁻¹ at 7 TeV &
 19.2 fb⁻¹ of 8 TeV
- J/ψ candidates
 merged with same
 vertex pion
 candidate to form
 B_C[±] candidate
- B_C[±](2S) candidate by adding two primary vertex pions
- $6842\pm4\pm5$ MeV $5.2~\sigma$ and consistent with second S-wave state: $B_c^{\pm}(2S)$

Data	Signal events	Peak mean [MeV]	Peak width [MeV]
7 TeV	100±23	6282±8	49±12
8 TeV	227±25	6277±6	50±8

ATLAS Status Direction Conference Conference Status Direction Conference Direction Conference Direction Conference Confer

- + 20.3 fb⁻¹ 8 TeV 2012 data
- 2 3 lepton channels:
 - Tri- & same sign di-lepton: cut & count
 - Opposite sign: multivariate neuronal network: best discriminant for (≥5j, 2b) region in 2ℓOSZ region
- 4.9σ evidence for combined ttV production
- Consistent with NLO QCD calculations

	Combination			
Process	Signal Strength	Observed σ	Expected σ	
tīV	$0.89^{+0.23}_{-0.22}$	4.9	4.9	
tŧW	$1.25^{+0.57}_{-0.48}$	3.1	2.4	
tīZ	$0.73^{+0.29}_{-0.26}$	3.2	3.8	

	Summary of combined simultaneous fit results				
Process	Measured cross-sections	Observed σ	Expected σ		
tτ̄Z	$150^{+58}_{-54}(\text{total}) = 150^{+55}_{-50}(\text{stat.}) \pm 21(\text{syst.}) \text{ fb}$	3.1	3.7		
$t\bar{t}W$	$300^{+140}_{-110}(total) = 300^{+120}_{-100}(stat.)^{+70}_{-40}(syst.) \text{ fb}$	3.1	2.3		

- 4.7 fb⁻¹ at 7 TeV & 20.3 fb⁻¹ of 8 TeV
- Associated W/Z production

- W $\rightarrow \ell \nu, Z \rightarrow \ell \ell, Z \rightarrow \nu \nu$
- Consistent results
 between multivariate
 (BDT) & invariant di-jet
 mass distributions based
 analysis

B-Tagging Performance: ATLAS-CONF-2014-046

- Run I finale: $H \rightarrow ZZ^* \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$
- 8.1 σ at m_H = 125.36 GeV
- Signal strength: 1.44^{+0.40}-0.33

e/y calibration: arXiv:1407.5063

muon performance: arXiv:1407.3935

Inner Detector alignment: ATLAS-CONF-2014-047

differential cross sections:
 p_{T,H}, y_H, m₃₄, |cosθ*|, n_{jets}, P_{T,jets}

 total uncertainties dominated by statistical uncertainties

HIGGS MIGHT MASS OF CONF-2014-042

- 20.3 fb⁻¹ of 8 TeV measure Higgs off-shell coupling strength
- ♦ Higgs signal strengths for $ZZ \rightarrow 4\ell + ZZ \rightarrow 2\ell 2\nu$
- 4ℓ : using matrix element kin. discriminant (8 obs., 3*m, $3*\theta$, $2*\phi$)
- 2ℓ2ν: counting in high m_T & E_T^{mis} enriched signal region

- Under assumption
 of identical on and off shell
 production and
 decay couplings
- On-shell signal strength can be interpreted as a constrain on the total higgs width $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}$

Leoton Havour Violating decay Z -> eu arxiv: 408.5774

- 20.3 fb⁻¹ of 8 TeV
- mass spectrum consistent
 with MC background
 expectation & no evidence
 of enhancement at Z mass
- mass spectrum fit as sum of background and signal yields a signal of 4±35 events
- upper limit on the branching fraction (at 95% CL) of:
 B(Z→eµ) < 7.5 × 10⁻⁷
- more stringent than LEP
 OPAL: < 17 × 10⁻⁷

Z decay	Acceptance (%)	Efficiency (%)
ee	37.6	28.7
$\mu\mu$	43.3	41.2
$e\mu$	38.9	36.5

Total cross _{arxivitios,5778} Section measurement

- 80 μ b⁻¹ 7 TeV 2011 data, with 90m β * optics
- Data-driven determination of effective beam optics & simulation
- Dedicated effort to determine abs. luminosity (L~ 5 x 10²⁷), ID vertex counting, LUCID & BCM calibrated with van der Meer

OF CONF-2014-033

- 20.3 fb⁻¹ 8 TeV 2012 data
- Theoretical predictions: NLO for qq->WW, LO for gg->WW, NNLO for gg->H->WW
- Main backgrounds, Drell-Yan, top production, W+jets & di-boson

WZ/Wy*
dominated same sign
validation sample

STAMMARY MODEL UPDATED & CECENT RESULTS

PREVIOUS BUT ONE LHCC

UPDATED

UPDATED

CON SUPPLIED FOR SUPPLIED FOR

- Concluded signature based searches for EW SUSY and stop pair production - plots summarising many analyses
- Stop→c+neutralino: 2 different strategies: monojet-like & c-tagged selection - agreement with SM -> significantly extended exclusion

Loi Summary & Status of Runz Preparations

ATLAS SERVICE Status OF COMPANY OF THE PANELS D. Dobos

- On-detector services up to innermost patch panel replaced
- Repaired all accessible failures
- Opto electronics moved to off-detector location for improved accessibility
- Power supply system upgraded

- All cables & cooling connected (Jan - May)
- Increase data bandwidth for Run 2 & beyond (2-3 10³⁴) -IBL ROD/BOC for Layer I & 2 under construction

- New fibres to counting room connected and tested
- Refurbished
 C₃F₈ cooling
 and heater
 system

FIXE RE-INSTALLATION

- Most significant improvements in efficiency: B-Layer (L0)
 & Outer Layer (L2)
- B-Layer dead module from 6.3% to 1.4%
- Layer 2 dead modules from 7% to 1.9%

- First test runs during June and July with detector cooled to verify functionality of all staves and modules
- Total: 1711 of 1744 functional, i.e. 98%

IS GYTANICONNECTION ENGLISH OF CONNECTION

- IBL was ready and installed before last LHCC
- End of June the IBL is connected to power, readout and cooling - ready to start first tests
- Analog and digital performance remeasured in final configuration in pit
- Cooling operated very stable at -35°C coolant temperature set point with about -25°C module temperature at full power consumption
 - Tested manual and automatic (simulated cooling plant failure) switching between cooling plants excellent results & only ~I°C short temperature increase observed

IN SERFORMANCE BY THE PIT

- 100% of IBL chips are functional, the detector operated very stable at room temperature and -5°C coolant temperature
- Preliminary comparison of stave noise & threshold in pit to QA

 Next steps: commissioning of the combined Pixel+IBL system, tuning of detector and integration to ATLAS data taking system (see M5)

Diamond Ecam

- Monitors luminosity for bunches which Atlas does not trigger on - therefore readout is "special" - reading to TDAQ with normal LIA triggers as well
- All 8 telescopes (24 modules) functional
 - Source tests on surface
 - dig. & ana. scanning chips after cabling
 - Next: Hitbus chip & diamond HV curves
- Commissioning as part of the IBL detector

- Installed in Pixel det.
- Powered and readout through IBL system
- Integrated in Athena geometry & offline

Semiconductor Trackerson

- Expansion of DAQ (higher pileup & trigger rate) with 90->128 Slinks & data compression allows 100kHz @ μ~87 for run 2 (25ns 14TeV)
- DQ & Data taking efficiency: firmware fix of ROD busy problem & improved SEU-invoked desynchronisation recovery procedure
- New commercial off-det. optical transmitters (small death rate & 10% power drop in 2012)

Transition Radiation Trackertet

- 100 kHz running needed push on front-end and readout limits:
 - reduced readout (23 bit instead of 27 bit words per event)
 - validity gate (time window) to reduce occupancy
 - updated readout driver clock-speed
 - runs at 104 kHz with 2% occupancy
 - Upgrade of front-end power supplies (gold-plated connectors to minimise voltage fluctuation) finished for detector
- Consolidation of ROD/TTC boards
- HV PS updated, recently observed voltage jumps of I50V split seconds after beam dumps, risk of discharge? under investigation
- gas leaks by O₃ develops PEEK pipe cracks in stressed areas
 - all accessible leaks (30%) were fixed tube insertion technique
 - * studied 3%->2% O₂ stable region reduces ozone 15-20%
 - remote gas regulation to reduce Xe
 - studied using Ar (not effecting tracking) for detector parts less critical for particle identification Ar configuration chosen to minimise physics effect under validation
 - alternative gas mixtures, e.g. based on Kr under study
 - working out a default and fall-back operational strategy for 2014

LICILIA AYONA Calcylance Car

- Repaired ~25 Front-End boards and other board in the FE crates
- Some readout fibre replaced and some additional spares installed -> additional installation with new routing in LS2
- New design LV Power Supplies installed last year & operated for a few months
 - Improvement of power-bus connectors on all PS in Jan.
 - Immediate failure on one unit during switching ON in Feb.
 - Failure traced down to ceramic SMD capacitors that developed micro cracks
 - Apr.-Jun. all ceramic SMD capacitors exchanged, since then all power supplies working well on the detector
- SW: High level trigger marking of noise bursts
- Phase I Upgrade Demonstrator installed in I FE crate. Transparent for current LI Calo performance

FIGURE SUPPLIES

- * LST FE electronics and LVPS campaign to overcome ~3-5% dead cells and several regions of $\Delta\eta \times \Delta\phi = 0.7 \times 0.1$
 - Low Voltage Power Supply failures
 - FE power or data transmission issues
 - Frequent transient LV trips(~0.6 /pb-1)
 affecting trigger, timing, ROL disabling
- All FE supplies replaced with new & more robust ones, better noise characteristics (non-Gaussian behaviour fixed, correlated noise halved, stable operation, no trips)

- FE electronics drawers consolidated, drastically reducing # bad channels
- Drawers tested with combined LICalo+Tile runs only 9 bad towers

FIGURE THE CALBRATION &

- Calibration systems:
 - Laser: Installation of the Laser II (improved precision & operation) in Oct.
 - Cs: Consolidation of water leaks re-gluing and reinforcing with epoxy from outside liquid drained to storage system after test,
 2 successful scans were performed in summer
- Minimum Bias Trigger Scintillators lost half of response in Run I - replaced with coarser granularity for outer disks:
 - Better light uniformity, yield ~same for outer & better for inner disks, constant fraction discriminators, electrical signal reflections fixed

Much csc - ndt Spectrometer

- Four CSC chambers successful delicate repairs
 - New ROD complex electronic development finished, two test systems assembled
 - Firmware development ongoing: everything but data handling in M5 week, full readout chain expected in M6, production readiness review early October
- MDT-EE chambers finished installation in 2013
 - Completing spectrometer as described in TDR
 - Doubling ROD-ROS bandwidth by firmware re-programming, I of 6 inputs -> output
 - New firmware to prevent 12.5 ns jumps
 - Shorter readout window to reduce saturation
 - Various chamber and gas leak repairs, fixed HV/LV problems, pierced tubes, etc.

MICHAPC + T6C Spectrometer

ATLAS
Status
D.Dobos
25

- Steady progress in repair of cracked or broken RPC gas inlets - located 306 leaking chambers and developed procedure in 2013
 - Margin for extra repairs beyond known
 - Readout/trigger electronics for second RPC layer in feet sectors to cover holes due to feet
 - Flowmeter & gas impedance changes to come
 - Noise reduction by improved grounding
- TGC replaced few of the 29 malfunctioning (not holding HV) chambers so far - bulk work starts after End-Cap Toroid closing (September)
 - Burst stopper (# triggers in short interval)
 - + Hot Rol masks (<high p⊤;~ same efficiency)
 - El/Fl coincidence (timing works standalone)
 - Tile-Muon coincidence prototype tests

FOYWAY ALFAZACE \$ DOLCAR CONSTRUCTORS

- ALFA measures to reduce heating: Roman Pot fillers, advanced air cooling, more ferrets
- Moved outer stations by 4m to improve angular resolution by factor 2
- "New" LUCID to address saturation and PMT ageing: 16 PMTs with quartz window, 4 PMTs with quartz fibres new electronics (25ns) count hits and integrated pulses + new tile laser & LED calibration system & ²⁰⁷Bi source for 40-50 kHz calibration peak

Cétector Control System DCS

Detector Control System

Hardware replacements: Front-End interfaces, Servers

Planning and operations:

DCS must remain operational during LS1!

Downtime of global

system minimized so far to 2 weeks

Software upgrades:

Linux migration,
SCADA maintenance, Virtualization,
New controls middleware: OPC UA

Wincc OA 3.11

Consolidation:

Eliminating weaknesses, improving maintainability

- ➡ Eliminated many custom components by unification & homogenization
- ⇒ Stable beams transition time expected to reduce significantly

LS1

New Integrations:

Pixel Inner B-Layer, Upgrade prototypes

AUTOMATIC BEAM TRANSITIONS

Troger & Data Acquisition

 Almost all application level software rewritten: run control, expert system, DQ monitoring, data flow, histogram/information gathering, ... to improve stability & make detector recovery easier while running

- New web based services and enhanced tools
- Refurbishments: Dataflow (ROS), Network, Processing
 - Complete refurbishment of Data and Control Network(> throughput & >enhanced redundancy)
 - HLT racks, monitoring & online machines (end 2015)
 - SFO replacements performance Run-2 needs (~1kHz)
- ROS components delivered, I I O Servers, ~200 "RobinNP", patch panel, patch cables, etc... assembly and burn-in on schedule Installation of fibers ongoing

Trigger & Data Acquisition Trigger

- Central Trigger Processor with new firmware and boards:
 - CTPIN firmware: doubles to 320 usable triggers
 - CTPCORE board: doubles to 512 trigger items, 16 bunch groups, LITopo integration & partioning, better monitoring
 - CTPOUT boards: better monitoring, 20->25 TTC outputs
- LI Calo improvements:
 - ASICs->FPGAs (nMCMs)
 - Bunch-train dependent pedestal shift pileup correction
 - Independent LUTs: non linear calibration for jets (JEP) & adjust isolation cuts in CP

- Rework digital processors (CP/JEP firmware & CMX)
 - Topological processing & more flexible isolation
 - * Trigger objects (E & Rol info at backplane) & 160 MHz backplane
- Kinematic & correlative algorithms to enhance trigger sensitivity of topological processor (LITopo)

Computing, Software & Data Freparation

- Factor ~3 in reconstruction speed: 2 in track seeding 4 in tracking
 - Algorithmic improvements; cleanups; Eigen matrix library; Intel math library; switch to 64 bit; SL5SL6, ...
- DC-14 releases are done (8 TeV production nearly done, 13 TeV release 19.1.1.5 last week)
- Many analysis software tutorials at CERN and worldwide (US, ATLAS-D, ...) to teach people how to migrate their analysis code
- Next big step in DC-14:
 - Many deviations are implemented for the central derived data production
 - We are working on the integration with the new production system
 - Distributed computing: Rucio and ProdSys2 deployment & commissioning

	M1 🎻	M2 🎻	M3 🎻	M4 🎻	M5 🎻	M6	M7- Cosmic Run Nov 24th - Dec 7th
	Feb 17– Feb 23	Mar 31- Apr 4	May19- May 23	Jul 7- Jul 11	Sep 8- Sep 12	Oct 13- Oct 17	All detectors included. B field ON (likely second week)
PIX				X ¹ , X ²	X ²		 ¹ TDAQ integration, using events simulated at ROD ² test with frontend, ID endplate in, detector cold nominal
IBL				X ¹	X ²		As above
SCT				Χ	X ²		As above
TRT		X					All information in P1 Twiki:
LAR				Χ			https://atlasop.cern.ch/twiki/bin/view/Main/Run2Preparation
TIL				Χ			M4: TILE/MBTS(a)+SCT successfully included
MBTS				Х			(M4': LAr, PIX, IBL)
L1Calo	X ¹			X ²	X ³	X ⁴	 Readout only. ² Full legacy triggering with TIL + LAR CMX triggering both CP/JEP systems, L1Topo Readout Commissioned. ⁴ L1Topo Commissioned fully in trigger system. Possibly TGC trigger
CSC	X ¹				X ²	X ²	¹ Old RODs, side A only ² New ROD Commissioning
MDT	X						
RPC		X ¹	X ¹				¹TDAQ integration. HV for ~ 1 sector
TGC	X^1					X ²	¹ no HV/gas until detector closed, ² chamber replacements
всм		X					M5: TDAQ 5.04.00 update, CONDDBR2
ALFA						Χ	Possibly larger Muon trigger, 1st tests CSC ROD
LUCID						Χ	LAr+TIL (MBTS A+C) + Calo triggers, all ID cold
Lumi					Χ		ALFA in M6

A COMPANIENTS HIGHLIGHTS

CONTROL ROOM 24/5

NEW CSC READOUT

- Successful integration into ATLAS partition of:
 - CSC + nROD successfully in
 - IBL run in ATLAS partition (IROD I stave)
- Combined Runs (& 100kHz tests)
 - PIX,SCT,TRT, L1Calo, LAr,TILE (MBTS), nCSC, RPC (+ trigger sectors 3-7), MDT, BCM, LUMI
 - Trigger: TRT, Muons, MBTS, Em, Jet, Tau...

Summary

- Big flow of final run-1 papers (52 in 3 months) across all areas: measurements, searches, performance
 - · including observation of a new Bc state
 - final Higgs results now being submitted, wide range of measurements include fiducial and differential cross sections
- ATLAS is closing for physics, and recommissioning of all parts is well underway
 - Pixel live fraction >98%
 - · New IBL and DBM detectors, read-out working
 - Many other improvements and consolidations in place
 - Trigger and offline work also very well advanced
 - Combined run in "M5" week very successful
- ATLAS will be ready & eager for first 13 TeV collisions!

1995 ARXIV:1408.7084 + ARXIV:1408.5191 → VV 4 4 - 4

- 4.5 fb⁻¹ at 7 TeV & 20.3 fb⁻¹ of 8 TeV
- Improved calibrations for photons, electrons and muons & analysis techniques (5 production mechanisms simultaneously)

Combined:

 μ =1.17±0.27 for m_H=125.4 GeV; SM compatibility 0.7 σ

- Run I finale: $H \rightarrow ZZ^* \rightarrow \ell^+ \ell^- \ell^{\prime +} \ell^{\prime -}$
- 8.1 σ at m_H = 125.36 GeV
- Signal strength: 1.44^{+0.40}_{-0.33}

e/\forall calibration: arXiv:1407.5063 muon performance: arXiv:1407.3935

Inner Detector alignment: ATLAS-CONF-2014-047

- Cooling operated very stable at -35°C coolant temperature setpoint with about -25°C module temperature at full power consumption
- Tested manual and automatic (simulated cooling plant failure) switching between cooling plants excellent results & only ~I°C short temperature increase observed
- Emergency blow system (CO₂
 bottles) for beam pipe bakeout tested
 for 4 hours, commissioned with 3 kW
 load and a 2h total failure of water &
 electricity
- Recovery procedure tested would allows continuation of bakeout even with both cooling plant failure

EL WIYES COMPRODUCTION

- Mid-way during production discovered corrosion of wire bonds
 - * 2 staves exposed to accidental severe condensation during a test
 - Observed corroded wire bonds, detailed inspection of all staves
 - Reworked of all staves which were produced so-far (replace corroded wires and clean affected areas)

The corrosion can be reproduced even on bare cleaned flex with the drop of DI water Flex for different vendors tested – many show similar issues

EDS/XPS/FBI analysis showed:

- Halogen (Cl or F) associated with the corrosion product (residue)
- No surface halogen contamination measured on cleaned samples

One over two techniques showed significant Fluorine into the gold layer (7nm)
Where the Cl and F could come from?
Surface migration, cover layer, gold metallisation?

Must avoid condensation at all cost!

IEL STAVE QA FORMSTORES

- Staves operate well at 1500 e⁻ threshold
 - Important for operation after radiation damage!
- Noise is ~130 e⁻ for planar and ~150 / 170 e⁻ for 3D CNM/FBK modules (systematic higher setup noise on A-side)

IEL STAVE QA

- Goal: less than 1% dead pixels
- Achieved: detector has ~0.1 % dead pixels!
 - Disconnected pixels usually on sensor edges

Arranged modules & staves in final IBL for uniform low η - φ distribution of dead pixels for η <2

SCINICOMUSICIAN BOTTLENECKS

ROD/BOC pair x90 (now x128)

DAVE ROBINSON

Cetector Control System DCS

Detector Control System

LS1 work progress

- Replacement of all DCS back-end servers (70% done), counting room rack revisions
 - ▶ Replacement of CANbus interfaces (PCI⊃USB), 90% done
 - Replacement of few custom PCI interfaces
- Operating system upgrades: migration to Linux (SLC6)
 - All DCS machines under Linux, legacy OPC servers on virtual machines w Windows
 - Upgrade of standard hardware interface drivers for all components, mostly done in P1 – all on test systems
- Major SCADA software upgrade Siemens WinCC OA 3.11 (=PVSf from 3.8), only for PIX and SCT still to be done
- Back-end software reviews and consolidation, adaption to infrastructure changes/upgrades (new racks, IBL...)
- Downtime of DCS was kept to minimum so far (2 weeks), full DCS restarts due to UPS interventions exercised w/o problems
- LHC interaction: first dry run performed, Muon detector STANDBY/READY transition times expected to be improved

MUCHCSC NEW RODS SOCIAL CARGO CONTROLL SOCIAL CONTROLL

