

CMS Status Report

LHCC Open Session
24 Sept 2014
Jay Hauser, UCLA

Outline of the talk

- Context: past, present, and future activities
- Recent physics highlights from Run 1
 - Higgs, b, SUSY, top, SM
- CMS readiness for Run 2
 - Detector upgrades
 - Pixel detector
 - Software & computing, CSA14 exercise
 - Priority physics (PHY14) exercise
- Upgrades: the Phase 2 Technical Proposal for HL-LHC

Context – the past – legacy analyses

- Run 1 in 2010-2012: 7+8
 TeV and 5+20 fb⁻¹ pp
 collisions
 - Up to 0.7E34 @ 50 ns
 - Also HI pPb, PbPb

- 332 physics publications
 - 30 since last LHCC
 - Wrap this up soon to concentrate on Run 2

Context – the present – LS1 work

- Prepare for 1.5E34 luminosity @ 25ns, for example:
 - Tracker and preshower going cold for longevity to 500 fb⁻¹
 - Muon system upgrades for better L1 trigger
 - New DAQ2 with modern hardware
 - New timing/control system
 - Infrastructure: new beam pipe for Phase 1 pixel upgrade, muon shielding
 - Maintenance and repairs

LS1: many detector configs in SX5...

Context – the future

- HL-LHC presents challenges for the CMS detector
 - Nominally 5x the luminosity
 - Implies 5x pile-up and many trigger rates and CPU times increase even faster (non-linear)
 - 6x the integrated radiation doses
- Upgrades now focus on the Phase 2 Technical Proposal
- Major detector components needed:
 - New rad-hard Si tracker with L1 track trigger
 - New rad-hard endcap calorimeters
 - Various trigger, barrel ECAL electronics, muon upgrades, infrastructure improvements

Selected recent physics highlights

- Higgs
 - Last major analysis on $H \rightarrow \gamma \gamma$ accepted for pub
 - Combination of all results presented at ICHEP
- b physics
 - B_s+B_d→μμ "analysis level" combination with LHCb now public, Nature article being finalized
- SUSY
 - Combination EW chargino+neutralino search (WZ, ZZ, hW+MET, hZ, hh+MET)
 - "Dilepton edge" fully investigated
- Top mass
 - Hadronic and dilepton channels complement the previous l+jets measurements
- Standard Model
 - Dijet differential cross-sections to 5.5 TeV!

$H \rightarrow \gamma \gamma$ and Higgs combination

• Final $\gamma\gamma$ mass plot

• Combine $H \rightarrow (\gamma \gamma, ZZ, WW, \tau \tau)$, VH \rightarrow bb, and ttH $\rightarrow (\tau \tau, bb)$

$$m = 1.00 \pm 0.13$$

 $m_H = 125.03^{+0.26}_{-0.27}(stat)^{+0.13}_{-0.15}(syst)GeV$

LHCb-CMS B⁰→μμ combination

- FCNC physics is sensitive to certain BSM contributions such as extra Higgs doublets
- The first likelihood-level combination between the experiments: simultaneous fit for both B_d and B_s hypotheses
- Result is public, paper is in the final stages of joint review for submission to Nature

Expansion of SUSY EW $\chi^+_1 \chi^0_2$ search

Previous searches used WZ, ZZ, hW+MET

 Add channels hZ, and hh+MET, including h→γγ

Simplified models for limits

SUSY dilepton edge search

- Dilepton+jets+MET channel
- An excess was observed below 70 GeV in dilepton mass already in 2011 data
 - Example SUSY decay channel

$$\tilde{b}\tilde{b}^{\star} \to \tilde{\chi}_{2}^{0}b\tilde{\chi}_{2}^{0}\bar{b}$$

$$\downarrow \tilde{\chi}_{2}^{0} \to \ell\tilde{\ell} \to \tilde{\chi}_{1}^{0}\ell^{+}\ell^{-}$$

$$\downarrow \tilde{\chi}_{2}^{0} \to \tilde{\chi}_{1}^{0}Z^{\star} \to \tilde{\chi}_{1}^{0}\ell^{+}\ell^{-}$$

- In both cases it would show up as a kinematic edge at $m(\chi_0^0)-m(\chi_1^0)$
- Wrap-up: the excess is at the 2.6σ level, but no corroboration from other channels is seen
- Clearly a channel to watch in Run2

Top mass: new measurements

- All-hadronic and dilepton channels complement the existing single lepton measurement
- The fully leptonic analysis is the first "blind" top mass measurement in CMS

```
m_t(0\ell) = 172.08±0.36 (stat.+JSF) ± 0.83 (syst.) GeV

m_t(1\ell) = 172.04±0.19 (stat.+JSF) ± 0.75 (syst.) GeV

m_t(2\ell) = 172.47±0.17 (stat. ) ± 1.40 (syst.) GeV
```


SM physics: jet cross sections

 Dijet differential cross sections as function of |y_{max}| and M_{jj} to 5.5 TeV(!), to test PDFs and NLO pQCD

CMS readiness for Run 2: summary

- Detector: numerous LS1 upgrades and repairs done
- Recent 'surprise' with barrel pixels:
 - One quarter with 47 modules (7% of total BPIX) not responding – repair is ongoing
- DAQ2 and new Timing and Control system (TCDS) are being deployed and exercised
- Software, Computing: various improvements, CSA14 summer challenge exercise just finished successfully
- Analysis: PHY14 exercise aims to prepare high priority analyses for speedy results on first 1-5 fb⁻¹

LS1 upgrade: Tracker running cold (-15°)

Si tracker commissioned at -15° C (tested to -20° C) for required longevity to 500 fb⁻¹

Bulkhead with insulation

LS1 upgrade: CSC and RPC new detectors

+DT muon: insert optical links and move trigger electronics to service cavern

CSC cosmic ray hits in July

LS1 upgrade: shielding walls (YE4) constructed in both endcaps

LS1 upgrade: new beampipe

New reduced-diameter pipe ready for upgraded pixel installation YETS 2016

And more detector work ...

- New SiPM photodetectors in outer HCAL (done)
- New thin-window, multianode PMT in HF (done)
- New μTCA readout for HF (being deployed)
- New beam monitoring (e.g. new silicon pixel based lumi monitor ,PLT) in progress
- Phase 1 trigger upgrade (e.g. optical splitting) (ongoing)
- Beam instrumentation (Pixel Lum Telescope, Beam Conditions Monitor, Beam Loss Monitor) (ongoing)

Pixel (BPIX) status

– Discovery:

- ~25% (47/192) of BPIX modules in one half-shell were found unresponsive at final checkout, 2 weeks before insertion date
- The half-shell was transported to PSI for diagnosis and repair;
 the other three have been re-checked and are working fine

– The problem:

 Ohmic shorts between wire-bond pads on the High Density Interconnect (HDI). Most of the shorts look like "dendrites"

– Repair:

 The shorts can be removed in a controlled way thus repairing the module - "scratching". Also, production of new modules is underway, allowing to completely replace modules with multiple shorts. Layers 1 and 2 repairs are almost finished

– Prevention:

- Chemical analysis is underway; investigating conditions that create the shorts, and longevity of repair
- A plan has been developed to advance other tasks and install the pixel detector in December/January. No significant change to overall CMS schedule.

Commissioning at Point 5 in 2014

Eight Mid-Week Global Runs (MWGR) to commission new detectors,
 followed by an Extended Cosmic Run to verify operational stability

L1 and HLT Trigger

- Need to cope with factor of 2 luminosity, factor 2 in cross sections due to energy boost
- Goal is to keep the same physics sensitivity
 - Trigger has to select more wisely
 - Calorimeter: PU subtraction, better e isolation, tau ID
 - Muons: take advantage of LS1 detector upgrades
- HLT higher PU leads to larger reconstruction times – improve tracking algorithms
- Phase 1 calorimeter trigger upgrade is crucial for HI physics in late 2015 (jet trigger needs PU subtraction)
- First full menu aimed at PU=40, Δ T=25 ns is now implemented in CMS simulation

Software and computing summary

- New improved algorithms
 - For tracking, ECAL, muons, boosted jets, MET
- Readiness exercise CSA14 successfully concluded
 - Allows assessment of workflows/computing, reconstruction of physics objects
- Follow-on analysis exercise PHY14 will target a few highpriority analyses
 - Re-reco the GEN-SIM samples from CSA14
 - Test new reconstruction developments @ 25 ns
 - Include trigger menu and simulation
 - Define analysis strategies in case of new physics

Run 2 improved algorithms: Tracking

- Large improvements in fake rejection
 - Improved seeding from triplets
 - Cluster charge cut to reduce out-of-time PU

Boosted jet tracking

- Esp for b, t ID
- Use cluster splitting regionally around high pT calo-jets
- Improves efficiency at low ΔR

Now validating improved algorithms for ECAL and muons

Jets and MET

- PUPPI* technique uses per-particle PU subtraction. First results based on full reconstruction look promising
 - Can also be used on lepton isolation

Outcome of CSA14 exercise

- July-September 2014: simulation, digitization, reconstruction were robust in processing ~1.5 billion events
- Integrated and deployed a new analysis data format "MiniAOD"
 - 10x reduction in size relative to AOD (~40 kB at PU=20) that was used in Run 1
 - Plan to centrally produce the MiniAOD for 2015
- Beyond CSA14, begin production of Monte Carlo samples with 2015 startup geometry, GEANT4.10, and improved sim code:
 - October for GEN-SIM, February 2015 for DIGI-RECO
 - Factor of 2 speed improvement over the last year

Phase1 upgrade in LS1→LS2 period

- Major milestone
- System comes into operation

CMS Phase-II Upgrades

New Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to $\eta \sim 4$

Muons

- Replace FE electronics in barrel DT and endcap CSC inner rings
- Complete CSC system in forward region (new GEM/RPC technology)
- Add muon-tagging up to η ~ 3

New Endcap Calor meters

Radiation tole ant - increased granularity

Barrel ECAL

Replace FE electronics

Trigger/DAQ

- L1 (hardware) with tracks and output rate up to 500-750 kHz
- Latency of 12.5µs
- HLT output rate up to 5-7.5 kHz

Phase 2 upgrade planning

Summary for CMS

- Many Run 1 physics final results still in progress
- It has been a highly successful shutdown, with numerous improvements
 - The BPIX problem was recognized late, but looks to be solvable within the time remaining
 - CMS is in full recommissioning mode at Point 5 now
 - Trigger, software, computing, physics coordination are preparing to exploit fully the Run 2 data
- The CMS Phase 2 Technical Proposal is being prepared
 - Expect a decision on endcap technology early next year
 - TDRs to follow during the following two years

Backup slides follow

CT-PPS TDR

- CMS-TOTEM Precision Proton Spectrometer:
 - Central exclusive production at high luminosity:
 - quartic gauge couplings, QCD, search for new resonances
 - Project scale ~ 1 MCHF
 - Issues:
 - Detector operation close to the beam (RPs and MBPs)
 - Synergy with Phase 2 R&D (pixel and timing detectors)
- TDR was released:
 - https://cds.cern.ch/record/1753795

Beam Radiation Instrumentation and Luminosity (BRIL) Hardware

Z=+/- 14.4 m, R=5 cm; R=28cm

BCM2L:

- 4 pCVD diamond (inner) beam abort
- 8 pCVD diamond (outer) monitoring

Medipix

- Hybrid pixelated silicon
- THYOTIC PIXEIALECUSIICOIT

 | Social S

Si-PLT

Z=+/- 20.625 m, R=180 cm BHM:

- Fast PMTs, directionality
- Backend electronics

HF Luminosity:

- Photo-detectors
- backend electronics

Z=+/- 1.8 m, R=5-6 cm si-PLT:

- 48 si-pixel sensors
- special 40 MHz readout

BCM1F:

- 48 single crystal diamond sensors
- fast MIP counter, triggerless readout

BCM1F

BCM1L

BCM1L:

4 pCVD diamond – beam abort

HF Neutron RADMON:

Polyethylene moderator & ionization chamber

