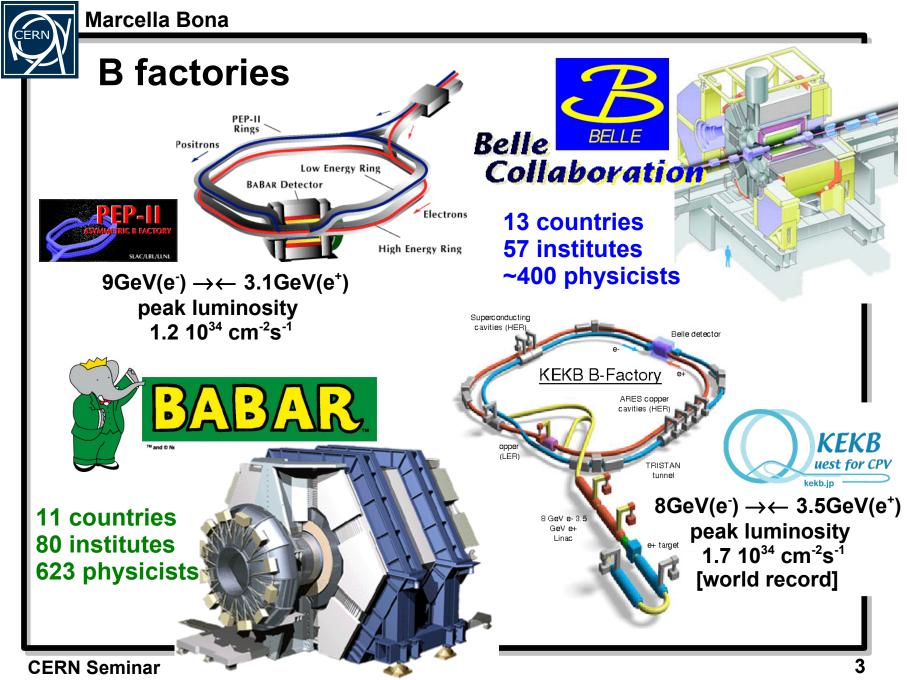
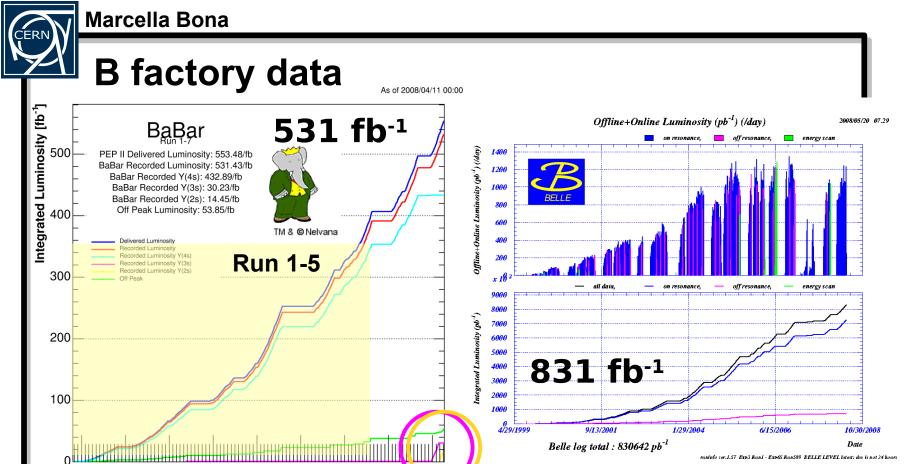

### Measurements of the Unitarity Triangle angles at the B factories





#### Marcella Bona





CERN Seminar May 27th, 2008



### Outline

- very briefly: on detectors and luminosities
- sin2β from charmonium final states:
  - a precision measurement
  - time for studying the theory error
- α from charmless two-body B decays
  - more complicated: penguins are conspiring
  - BRs and asymmetries of  $\pi\pi$  decays
  - also  $\rho\rho$  and  $\rho\pi$  (direct extraction of  $\alpha$ )
- γ from DK tree decays:
  - (almost) new physics free
  - unexpected precision from the B factories
- using the angles to constrain NP





- BaBar Y(4S) run concluded on December 21<sup>st</sup> 2007 then scan on Y(3S) and Y(2S)
- final collision at 12:43pm Monday 7 April 2008 after almost 9 years and more than 345 papers



# **CP** violation in the Standard Model

- The CP symmetry is violated in any field theory having in the Lagrangian at least one phase that cannot be re-absorbed
- The mass eigenstates are not eigenstates of the weak interaction. This feature of the Standard Model Hamiltonian produces the (unitary) mixing matrix V<sub>CKM</sub>.

Ks

With three families of quarks, there is one phase that allows CP violation in the SM. All the flavour mixing processes are related (through the unitarity of the V<sub>CKM</sub>) to this phase.

Unitarity Triangle $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ 

All the angles are related to the CP asymmetries of specific B decays

$$(\rho,\eta) \xrightarrow{B^{0} \to \pi\pi,\rho\pi} (\phi_{1},\eta) \xrightarrow{A^{0} \to 0} (\phi_{2},\eta) \xrightarrow{V_{td}V_{tb}^{*}} (\phi_{2},\eta) \xrightarrow{V_{td}V_{tb}^{*}} (\phi_{3},\eta) \xrightarrow{B^{0} \to J/\psi} (\phi_{3},\eta) \xrightarrow{B$$

# Three types of CP violation

- Three interference effects can be observed:
  - → CP violation in the mixing  $(|q/p| \neq 1)$   $\begin{vmatrix} |B_L\rangle &= p |B^0\rangle + q |\overline{B}^0\rangle \\ |B_H\rangle &= p |B^0\rangle q |\overline{B}^0\rangle \end{vmatrix}$
  - ★ (direct) CP violation in the decays ( $|\overline{A}/A| \neq 1$ )

both neutral and charged B's

★ (indirect) CP violation in interference between mixing and decay (Imλ ≠ 0)  $\lambda_{f_{CP}} = \frac{q}{p} \cdot \frac{\bar{A}_{f_{CP}}}{A_{f_{CP}}}$ neutral B's





# **Direct CP violation**

- both charged and neutral B's
- tagging not always necessary (charged and self-tagging modes) higher efficiency
- interference between (at least) two amplitudes contributing to the same final state

measured asymmetry is:

$$\mathbf{A}_{\mathsf{CP}} \equiv \frac{|\bar{A}_{\bar{f}}|^2 - |A_f|^2}{|\bar{A}_{\bar{f}}|^2 + |A_f|^2} \sim \sum_{i,j} a_i a_j \sin(\phi_i - \phi_j) \sin(\delta_i - \delta_j)$$
  
interesting modes  
$$\mathbf{M}_{\mathsf{K}^+\pi^-: \text{ tree + penguin}} = \sum_{i=1}^{\lambda_i} \sum_{j=1}^{\lambda_i} \sum_{j=1}^{\lambda_j} \sum_{j=1}^$$

♦ K<sup>0</sup>π+: pure penguin

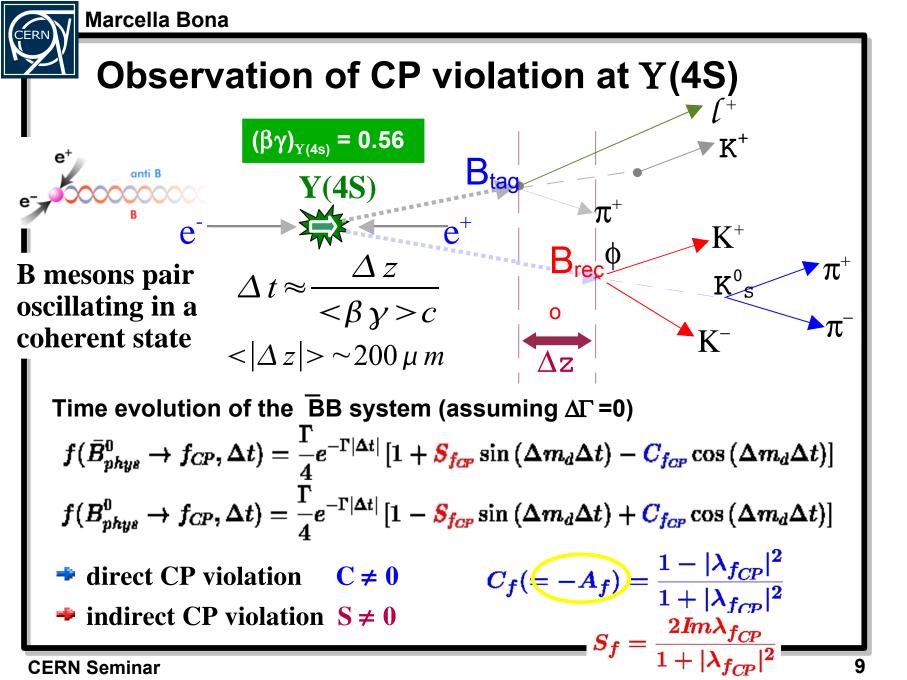
 $\delta_i$ : strong phase

**CP** even

**CP odd** 

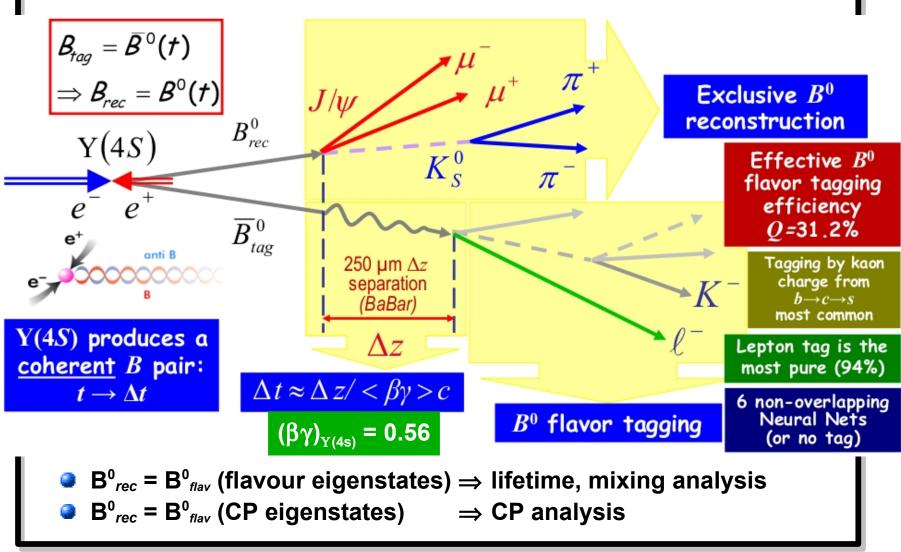
| CERN |  |
|------|--|
| . 2  |  |

# **CP violation in interference between mixing and decay**


decays to a final state 
$$f$$
  
accessible to both B and  $\overline{B}$   
(*f* are not necessarily CP eigenstate)  
if  $Im\lambda \neq 0$  then  $\rightarrow$  CP violation

$$\lambda = \frac{q}{p} \frac{A(\bar{B} \to f)}{A(B \to f)} = \frac{V_{td}^* V_{tb}}{V_{td} V_{tb}^*} \frac{\bar{A}}{A} \sim e^{-i2\beta} \frac{\bar{A}}{A}$$

I.Bigi, A.Sanda


Nucl.Phys.B193:85,1981

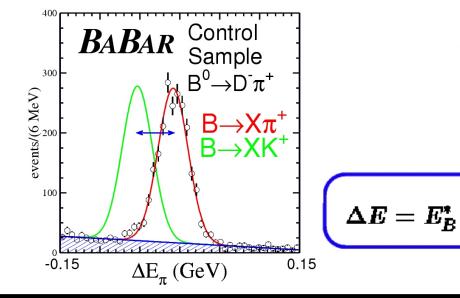
| examples                    | f                                       | $\operatorname{Arg}(\frac{\overline{A}}{A})$ | <b>λ</b> | parameter           |
|-----------------------------|-----------------------------------------|----------------------------------------------|----------|---------------------|
| mixing                      | $B^0  ightarrow l u X, D$               | $^{(*)}\pi( ho,a_1) = 0$                     | ~0       | $\Delta M_{B^0}$    |
| "sin 2 $eta$ "              | $B^0 	o J/\psi K^0$                     | , 0                                          | 1        | $\sin 2eta$         |
| "sin 2 $lpha$ "             | $B^{0}  ightarrow \pi\pi, \;$ rr,       | $\pi\pi\pi$ $\sim$ $(-2\gamma)$              | $\sim 1$ | $\sin 2lpha$        |
| $-$ "sin(2 $eta$ + $\gamma$ | $\gamma)$ " $B^0  ightarrow D^{(*)}\pi$ | $\sim$ $(-\gamma)$                           | ~0.02    | $\sin(2eta+\gamma)$ |

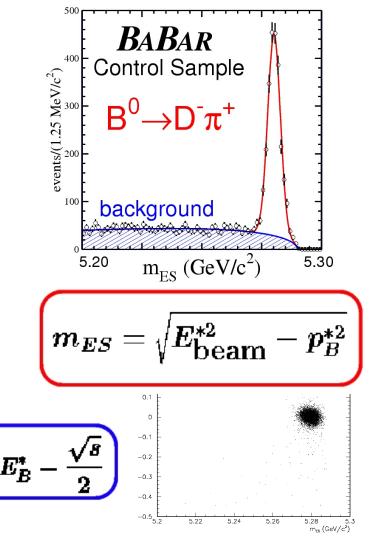




### **Time-dependent CP analysis**



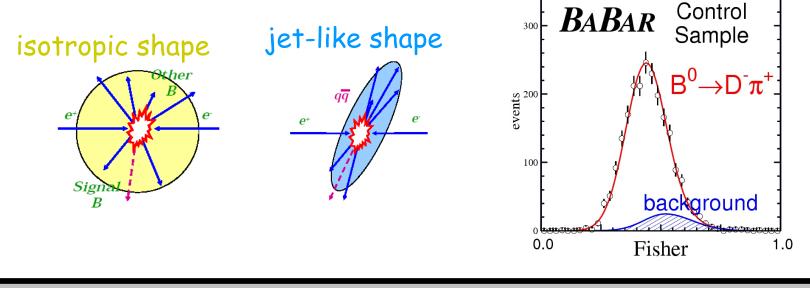




# Analysis strategy

- B-candidate selection through kinematic variables (AE, m<sub>ES</sub>)
- background fighting: against continuum light-quark production topological variables
- particle identification: K/ $\pi$  separation
- maximum likelihood fits
- Signal BRs ranging from ~ 10<sup>-3</sup> for J/ψK<sup>0</sup> to ~ 10<sup>-6</sup> for ππ decays
- main background contamination from light-quark pair production from the continuum
   uu, dd, ss, cc: total cross section ~ 3.4 nb<sup>-1</sup>
   to be compared to 1.1 nb<sup>-1</sup> for Y(4S)
- background from ττ production or two photons is mainly negligible
- background from other B decays can be important depending on the considered mode

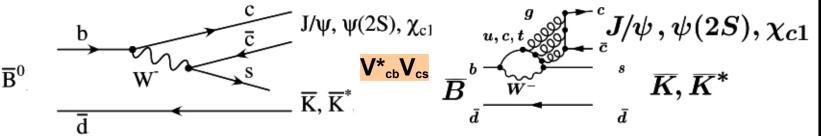
### **Experimental issues: B selection**

- kinematic variables:
  - → ∆E and m<sub>ES</sub> to be used in the likelihood
  - check the correlation of the variables
  - for example: the presence of a π<sup>0</sup> in the final state requires
     2D parameterizations









### **Experimental issues: background**

- to isolate the background: variables representing the shape of the event:
  - 🔶 signal: spherical
  - light continuum component: jet-like
  - shape variables are used in linear combination (Fisher discriminant) or Neural Network.
  - We can cut on the final variable or parameterize it to be included in the likelihood





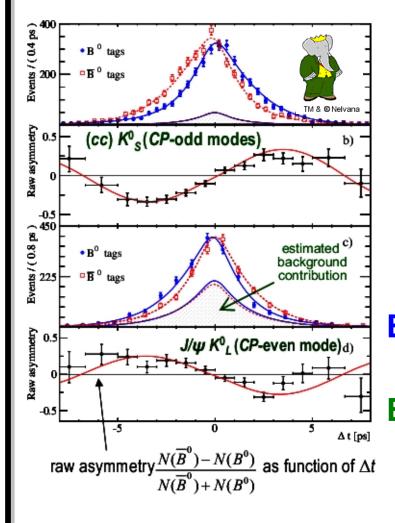
### $\text{Sin}2\beta$ in golden b $\rightarrow$ ccs modes

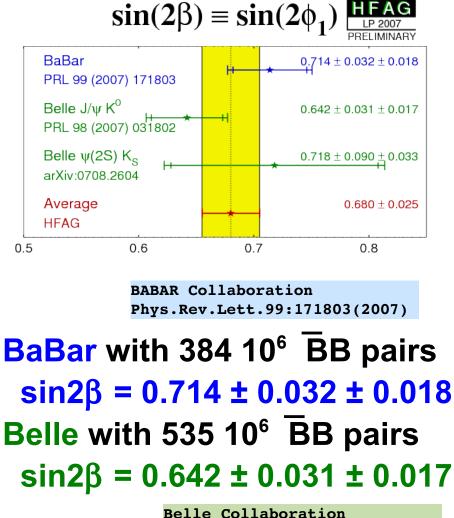


branching fraction: O (10<sup>-3</sup>) the colour-suppressed tree dominates and the t penguin has the same weak phase of the tree

$$A_{CP}(t) = \frac{\Gamma(\bar{B}^{0}(t) \to f_{CP}) - \Gamma(B^{0}(t) \to f_{CP})}{\Gamma(\bar{B}^{0}(t) \to f_{CP}) + \Gamma(B^{0}(t) \to f_{CP})}$$

$$= S \sin \Delta mt - C \cos \Delta mt$$


$$S \sim \sin 2\beta$$

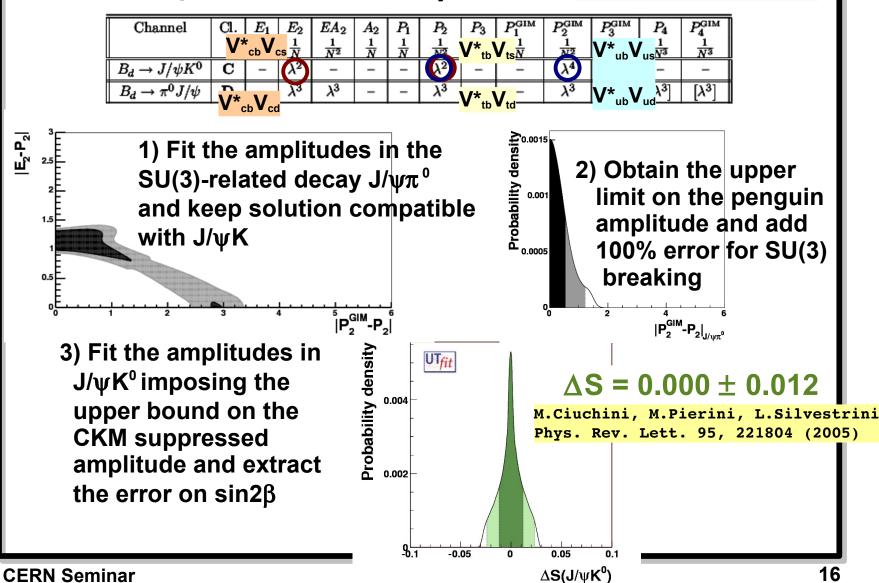

$$C \sim 0$$

$$\Delta S_{J/\psi K0} = S_{J/\psi K0} - \sin 2\beta \sim O(10^{-4})$$
H.Boos et al.  
Phys. Rev. D73, 036006 (2006)



### Latest sin2β results



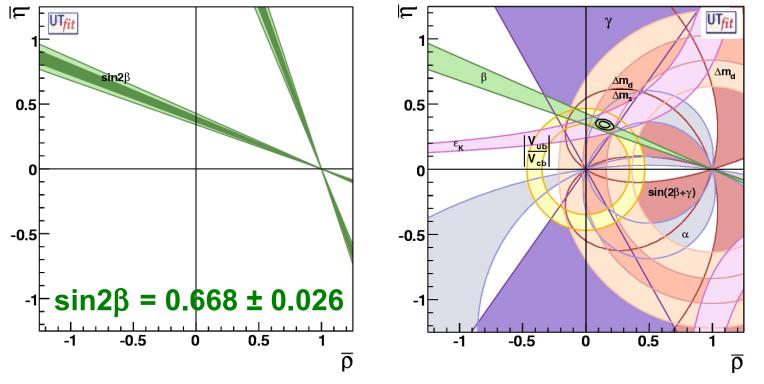



Phys.Rev.Lett.98:031802(2007)

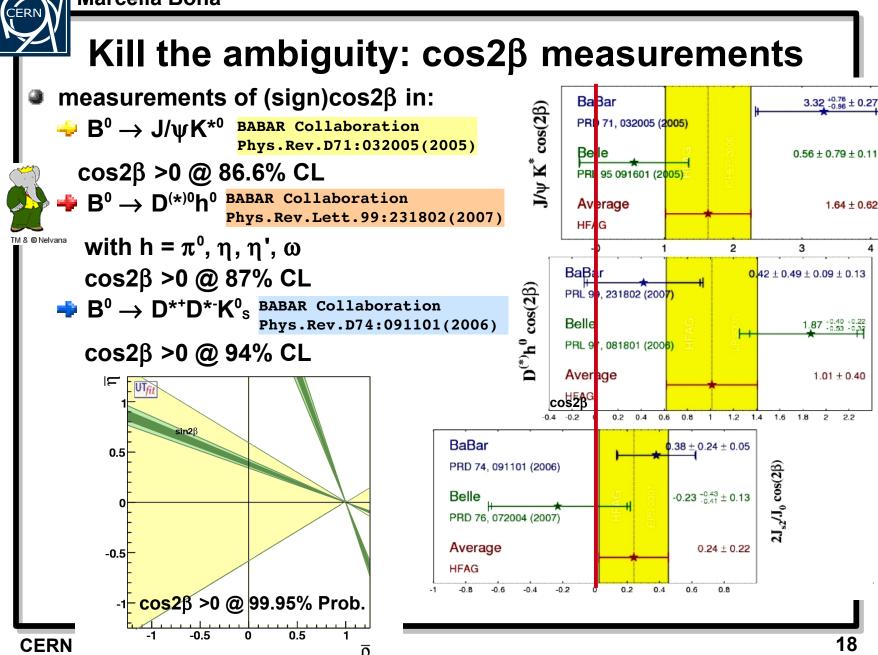


### Theory error on $sin 2\beta$

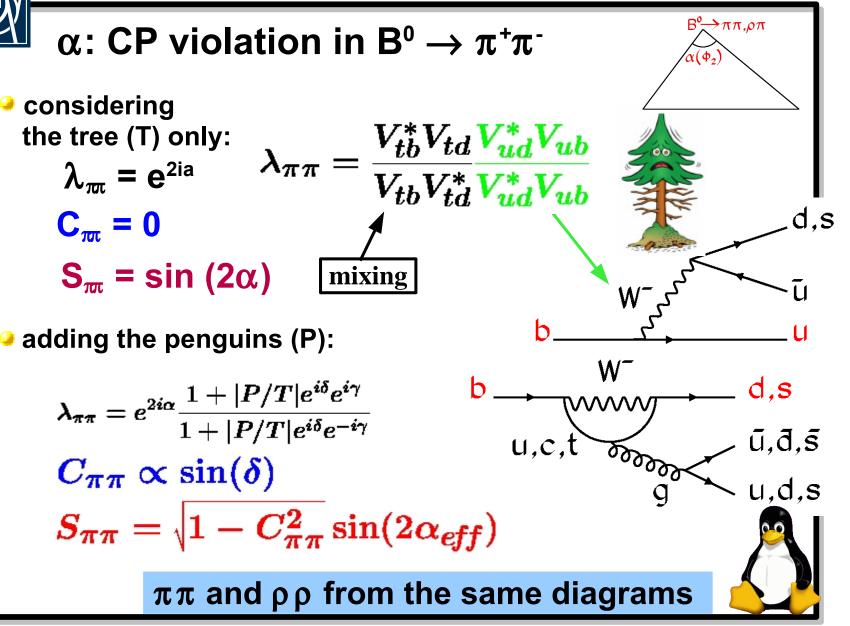
#### A.Buras, L.Silvestrini Nucl.Phys.B569:3-52(2000)

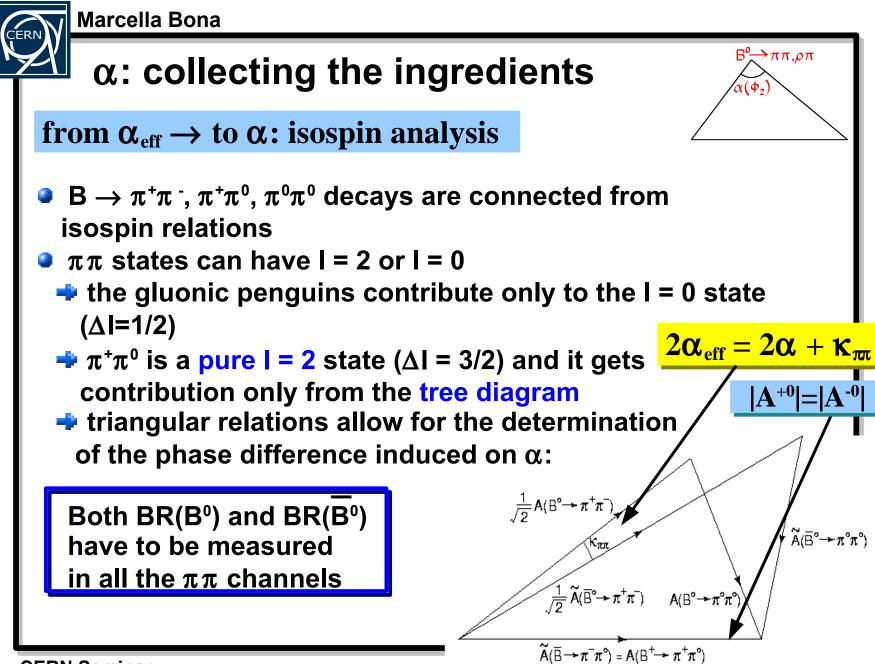






# sin2β from J/ψK<sup>0</sup> is the most effective constraint




UTfit Collaboration http://wwww.utfit.org

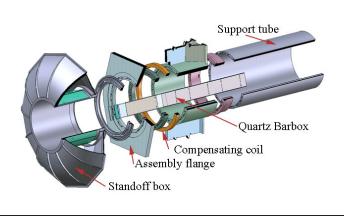



- only J/ψK<sup>0</sup> is included
- the estimate on the theory error from Ciuchini et al is used



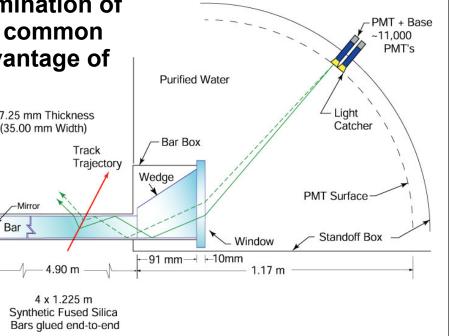








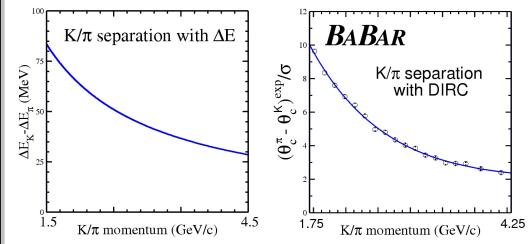

# Analysis addendum for charmless two-body decays


- in BaBar: for charmless two-body decays, simultaneous ML fit to all the final states that differ only of a charged kaon or pion: → e.g:  $\pi^+\pi^-$ , K<sup>+</sup>π<sup>-</sup>, K<sup>-</sup>π<sup>+</sup>, K<sup>+</sup>K<sup>-</sup>
- this allows for a better determination of both the background and the common signal parameters, taking advantage of the mode with more statistics (e.g.:  $K\pi$ ) 17.25 mm Thickness

Mirro Bar



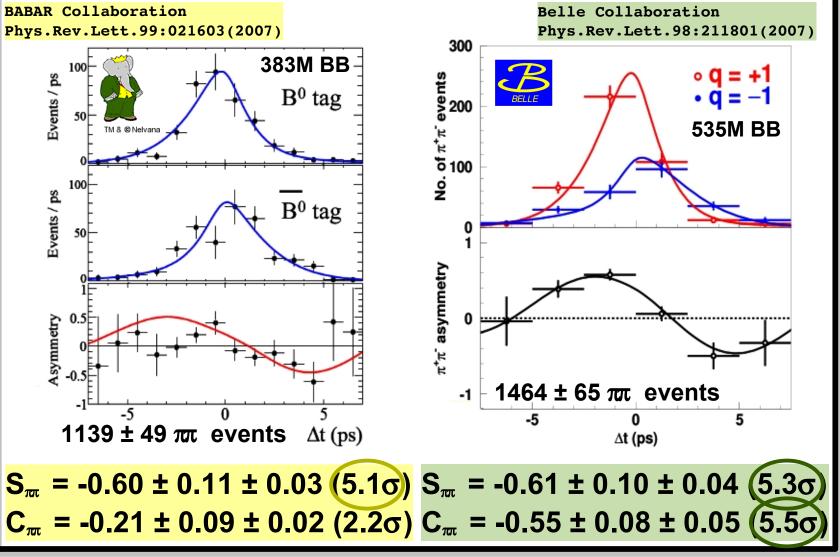



#### **Detector of Internally Reflected Cherenkov** light (DIRC)

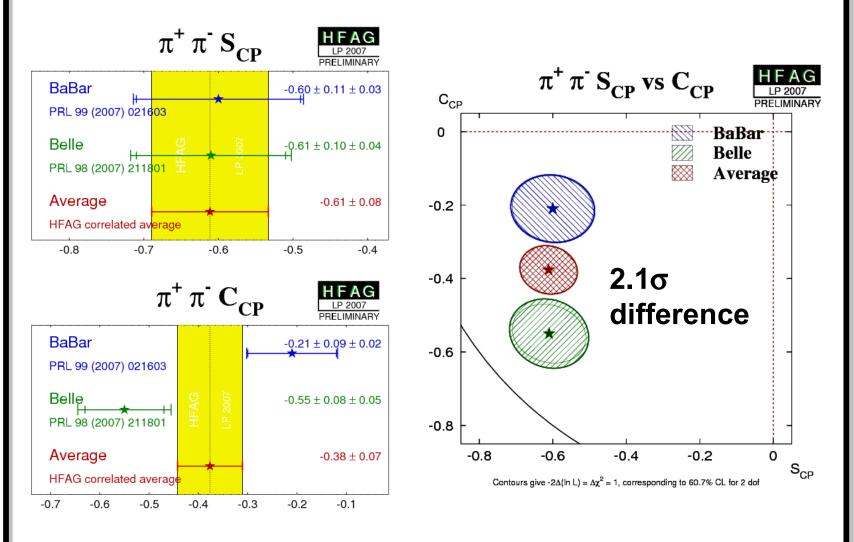





# Analysis addendum for charmless two-body decays


- K/π separation is therefore essential: the DIRC is key in these analyses
  - hh: momentum region [1.5, 4.5] GeV/c
  - $\Rightarrow$  13 $\sigma$  separation at 1.5 GeV/c
    - $2.5\sigma$  separation at 4.5 GeV/c
  - the dE/dx information from the Drift Chamber is used outside the DIRC acceptance [hh: 35% yield increase]



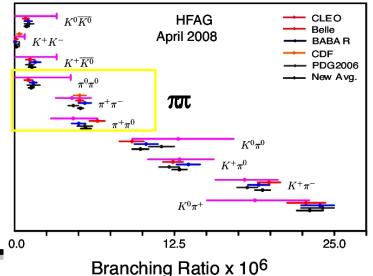


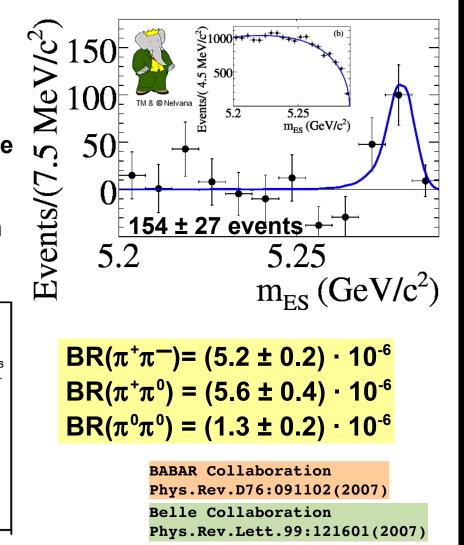


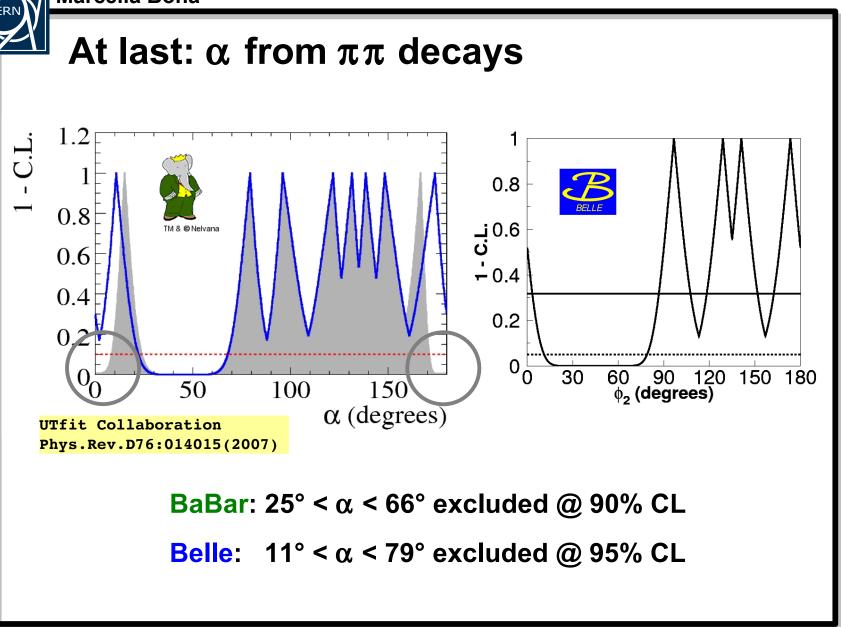

### Towards $\alpha$ : time-dependent analysis of $\pi\pi$



### Towards $\alpha$ : the world average for $\pi\pi$



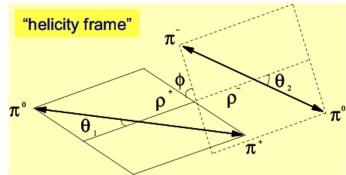





### Towards $\alpha$ : isospin-related $\pi\pi$ decays

simultaneous ML fit to:
B<sup>+</sup> → π<sup>+</sup>π<sup>0</sup>, K<sup>+</sup>π<sup>0</sup> (and cc)
π<sup>0</sup> recovery: (4%+6%)
merged π<sup>0</sup>: when the two photons are too close in the calorimeter to be reconstructed individually
γ → e<sup>+</sup>e<sup>-</sup> conversion: from interaction with detector

 $\mathcal{B}(B \rightarrow K\pi, \pi\pi, KK)$ 



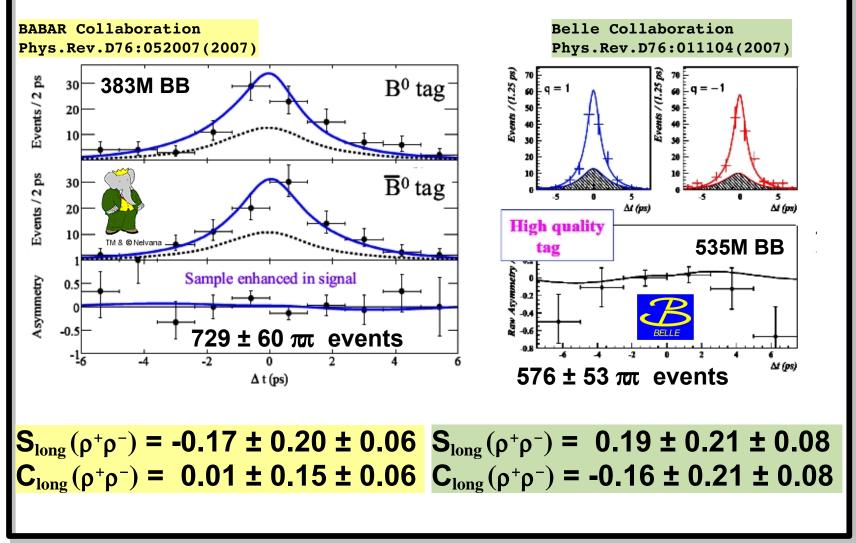






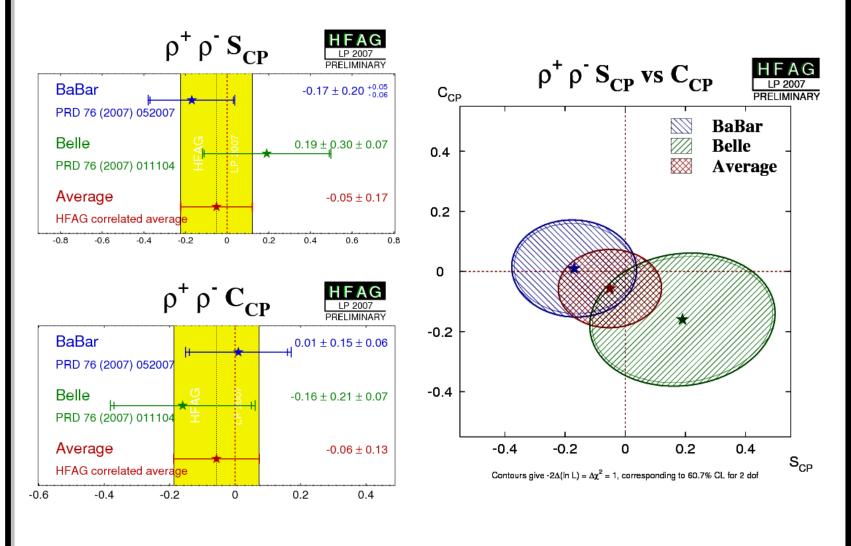

# But there is more: $\alpha$ from $\rho\rho$ decays

- Vector-Vector modes: angular analysis required to determine the CP content. L=0,1,2 partial waves:
  - Iongitudinal: CP-even state
  - 🔶 transverse: mixed CP states
- **a** +-: two  $\pi^0$  in the final state
- wide ρ resonance



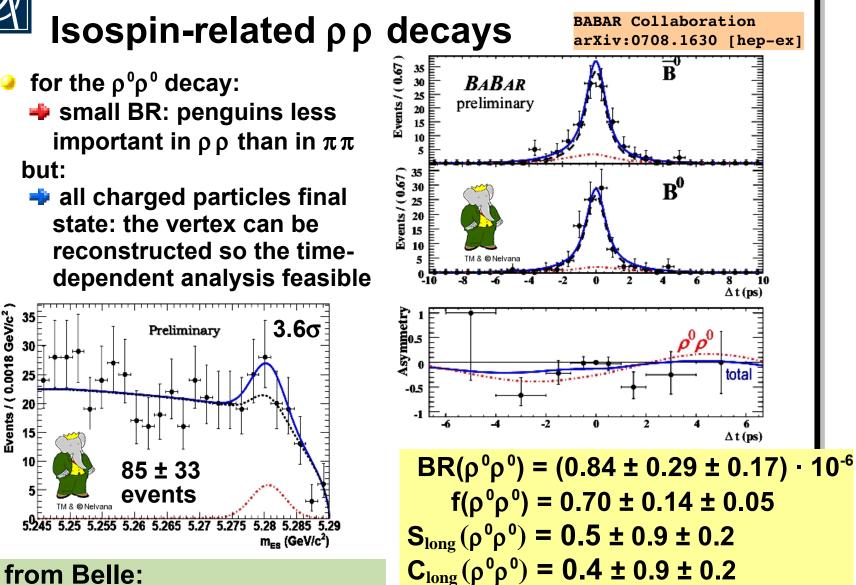

#### but

- BR 5 times larger with respect to π
- penguin pollution might be smaller than in  $\pi$
- ρ are almost 100% polarized:
  - 🔹 almost a pure CP-even state
- world average longitudinal fraction:  $\Rightarrow f_{long} (\rho^+ \rho^-) = 0.978 \pm 0.025$   $\Rightarrow f_{long} (\rho^\pm \rho^\circ) = 0.912 \pm 0.045$   $\Rightarrow f_{long} (\rho^\circ \rho^\circ)$  still to be measured




### Time-dependent analysis in $\rho^+\rho^-$ decays

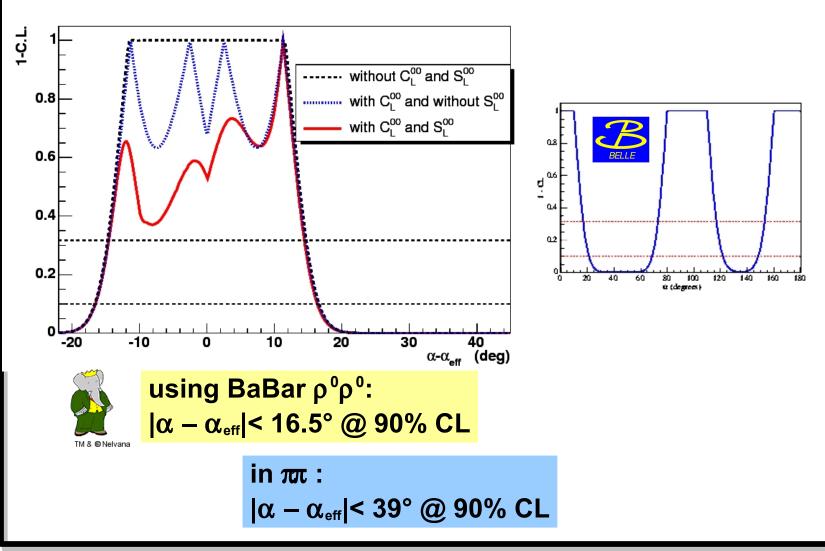





# World averages in $\rho^+\rho^-$ decays





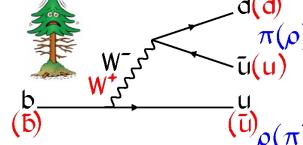


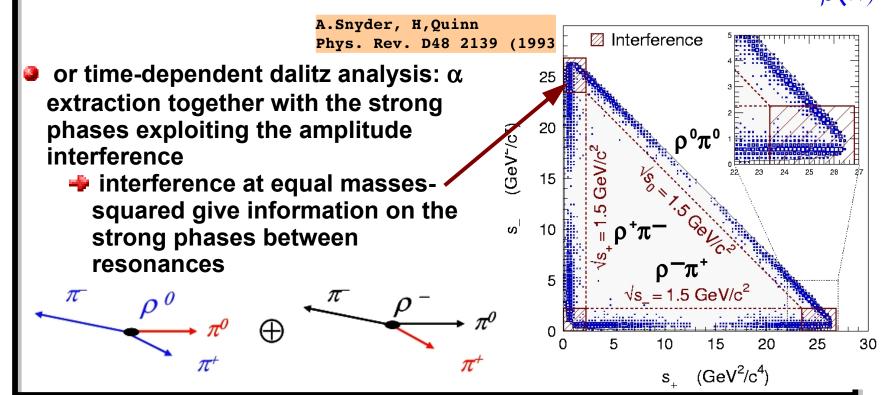



BR(ρ<sup>0</sup>ρ<sup>0</sup>) < 1.0 · 10<sup>-6</sup> @ 90% CL



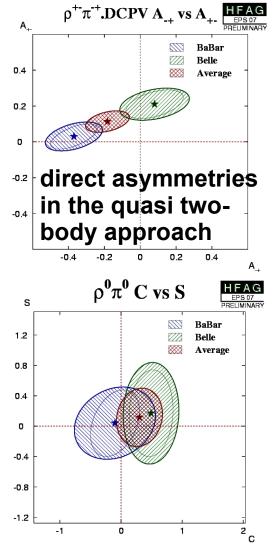
# Preliminary $\rho\rho$ isospin analysis



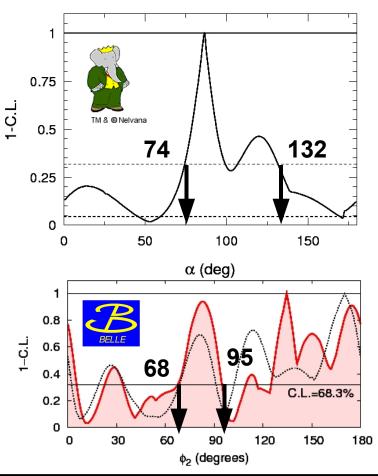




# Still $\alpha$ : Dalitz plot analysis with $(\rho \pi)^{0}$

Jominant decay ρ<sup>+</sup>π<sup>-</sup> is not a CP eigenstate
5 amplitudes need to be considered:

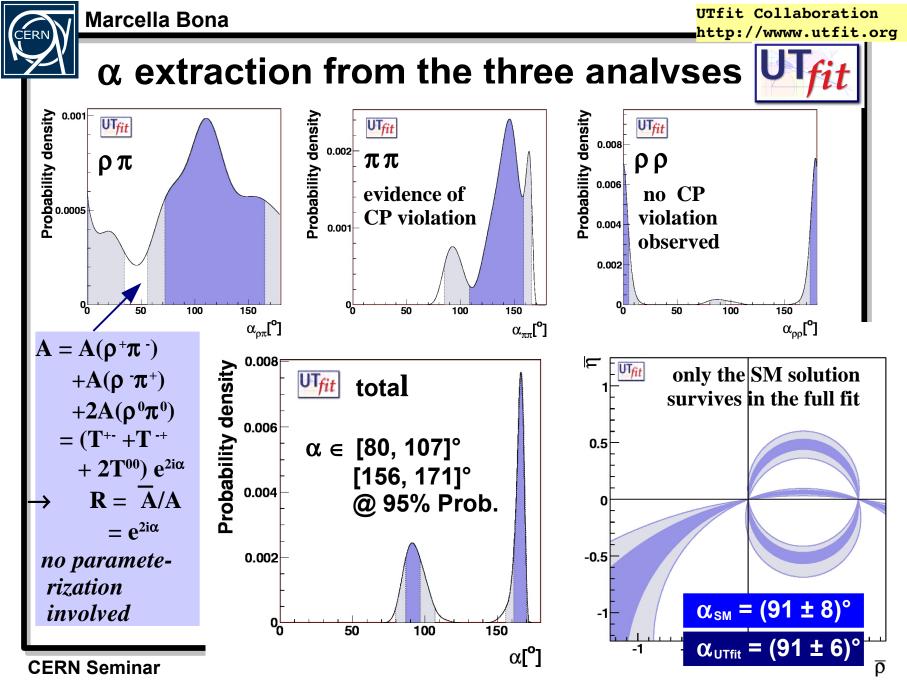

→ B<sup>0</sup> →  $\rho^+\pi^-$ ,  $\rho^-\pi^+$ ,  $\rho^0\pi^0$  and B<sup>+</sup> →  $\rho^+\pi^0$ ,  $\rho^0\pi^+$ → Isospin pentagon





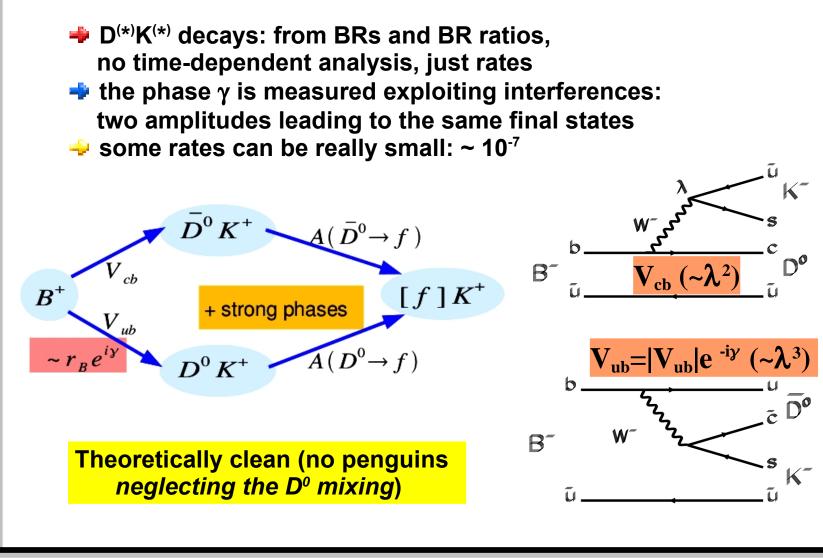


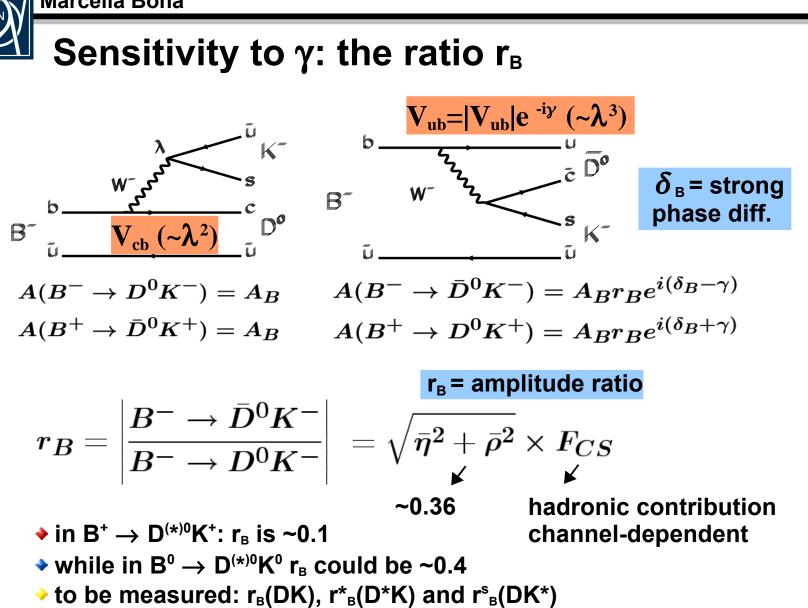

# Results from $(\rho \pi)^{0}$




 this analysis allows for a direct determination of α without ambiguities




no values excluded, no values selected yet


**CERN** Seminar



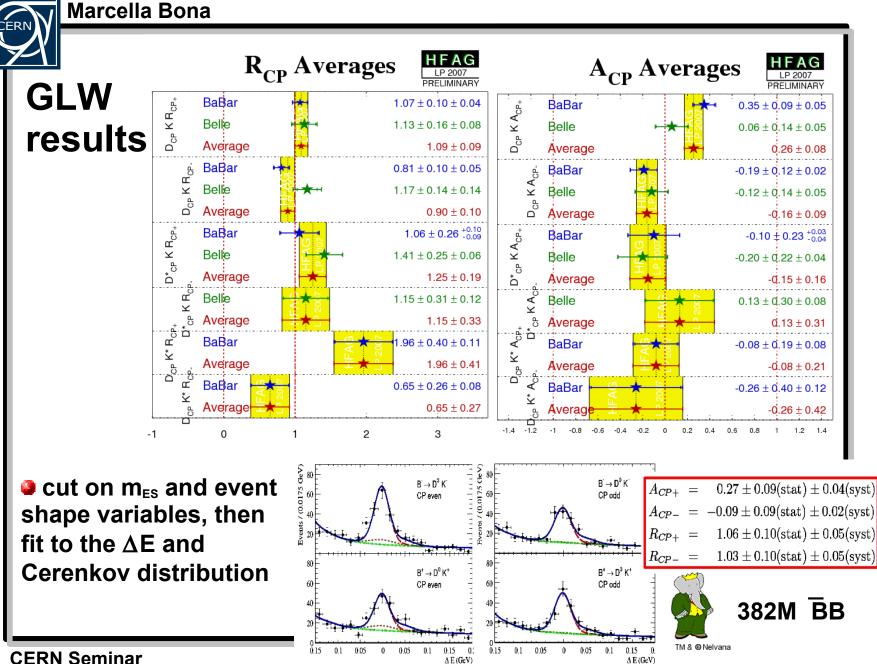


### Last but not least: γ and DK trees








### Three ways to make DK interfere

GLW(Gronau, London, Wyler) method: uses the CP eigenstates  $D^{(*)0}_{CP}$  with final states: K<sup>+</sup>K<sup>-</sup>,  $\pi^+\pi^-$  (CP-even), K<sub>s</sub> $\pi^0$  (ω,φ) (CP-odd)  $R_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos\gamma\cos\delta_B \quad A_{CP\pm} = \frac{\pm 2r_B \sin\gamma\sin\delta_B}{1 + r_B^2 \pm 2r_B \cos\gamma\cos\delta_B}$ ADS(Atwood, Dunietz, Soni) method: B<sup>0</sup> and B<sup>0</sup> in the same final state with  $D^0 \to K^+\pi^-$  (suppressed) and  $\overline{D}{}^0 \to K^+\pi^-$  (favorite)  $R_{ADS} = r_B^2 + r_{DCS}^2 + 2r_B r_{DCS} \cos \gamma \cos(\delta_B + \delta_D)$ more sensitive to r<sub>B</sub> **D**<sup>0</sup> Dalitz plot with the decays  $B^- \rightarrow D^{(*)0}[K_s \pi^+ \pi^-] K^$ the most sensitive way to  $\gamma$ three free parameters to extract:  $\gamma$ , r<sub>B</sub> and  $\delta_{B}$ 

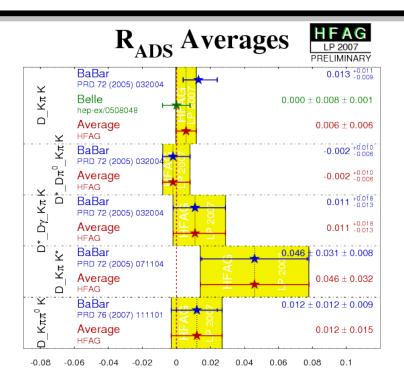


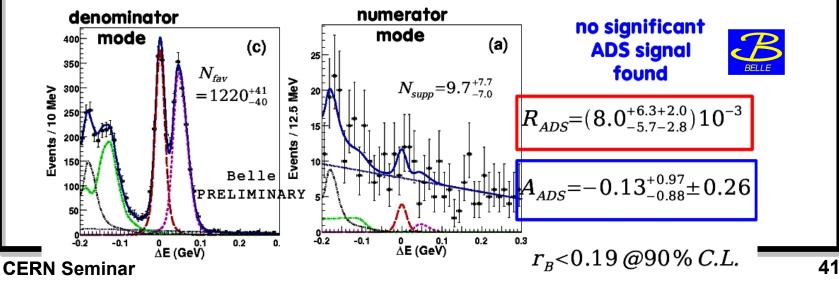
### γ measurement: GLW method

**Observables:** Clean but statistically limited: ratio of BF for CP/non-CP  $BF(B^{-} \rightarrow D^{0}K^{-}) \cdot BF(D^{0} \rightarrow f_{CP}) \sim 10^{-6}$ asymmetry B-/B+ for CP=+1/-1  $egin{aligned} R_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D^0 K^-) + BF(B^+ o D^0 K^+)} = 1 + r_B^2 \pm 2r_B \cos \delta \cos \gamma \ A_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP\pm} \ A_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP\pm} \ A_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP\pm} \ A_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP\pm} \ A_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP\pm} \ B_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP\pm} \ B_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP\pm} \ B_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP\pm} \ B_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP\pm} \ B_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^- o D_{\pm}^0 K^-)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^- o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP\pm} \ B_{CP\pm} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^- o D_{\pm}^0 K^-)}{BF(B^- o D_{\pm}^0 K^-)} \ B_{CP\pm} \ B$  $R(K/\pi) \equiv \frac{BF(B^- \to D^0 K^-)}{BF(B^- \to D^0 \pi^-)}$  ${}^{\bullet}$  for D<sup>(\*)0</sup>K, the D $\pi$  channel is used for normalization  $^{\bigcirc}$  reconstruct  $B^{+} \rightarrow D^{0}h^{+}$  with  $D^{0} \rightarrow K\pi$ [non-CP],  $D^{0} \rightarrow K^{+}K^{-}$ ,  $\pi^{+}\pi^{-}$ [CP+] and  $D^0 \rightarrow K^0_{\sigma} \pi^0 (K^0_{\sigma} \omega, K^0_{\sigma} \phi)$  [CP-] eliminate background from light-quark or cc events using Neural Net or Fisher Discriminants based on event shape variables fit of the R(K/ $\pi$ ) based on kinematic variable  $\Delta E$  and PID



**CERN Seminar** 


### γ measurement: ADS method


Combine dominant b  $\rightarrow$  c transition with doubly-Cabibbo suppressed (DCS) D<sup>0</sup> decay



### **ADS results**

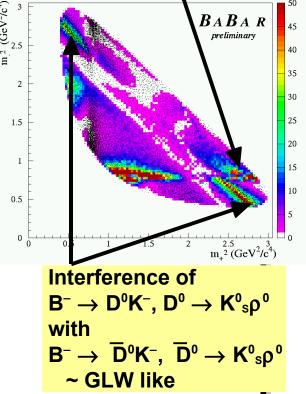
- Belle: cut on m<sub>ES</sub> and event shape variables, then fit to the ∆E distribution
   still no event found even
- in Belle's 657M BB sample

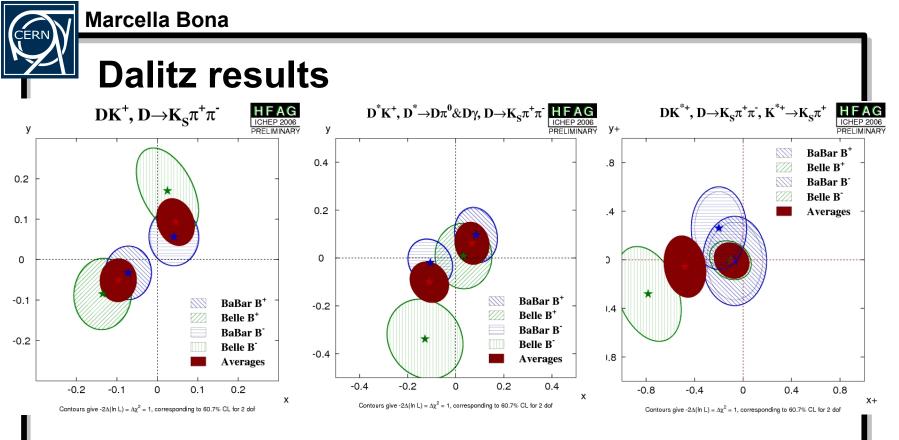






### γ measurement: Dalitz method


neutral D mesons reconstructed in threebody CP-eigenstate final states

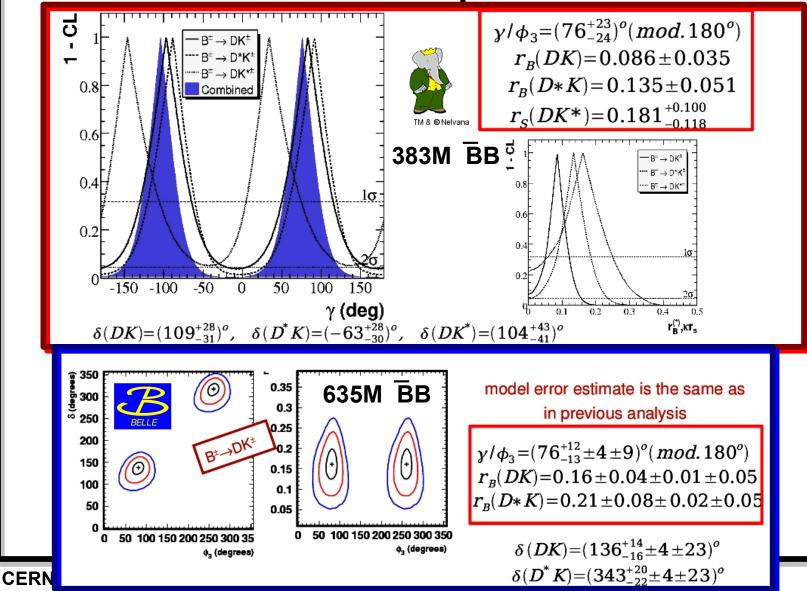

(typically  $D^0 \rightarrow K_s \pi^- \pi^+$ )

- the complete structure (amplitude and strong phases) of the D<sup>0</sup> decay in the phase space is below to be an independent data sets and used as input to the analysis
- use of the cartesian coordinate:

- γ, r<sub>B</sub> and δ<sub>B</sub> are obtained from a simultaneous fit of the K<sub>S</sub>π <sup>+</sup>π <sup>-</sup> Dalitz plot density for B<sup>+</sup> and B<sup>-</sup>
   need a model for the Dalitz amplitudes
   2-fold ambiguity on γ
- ightarrow 2-fold ambiguity on  $\gamma$

Interference of  $B^- \rightarrow D^0 K^-, D^0 \rightarrow K^{**} \pi^-$ (suppressed) with  $B^- \rightarrow \overline{D}^0 K^-, \overline{D}^0 \rightarrow K^{**} \pi^-$ ~ ADS like





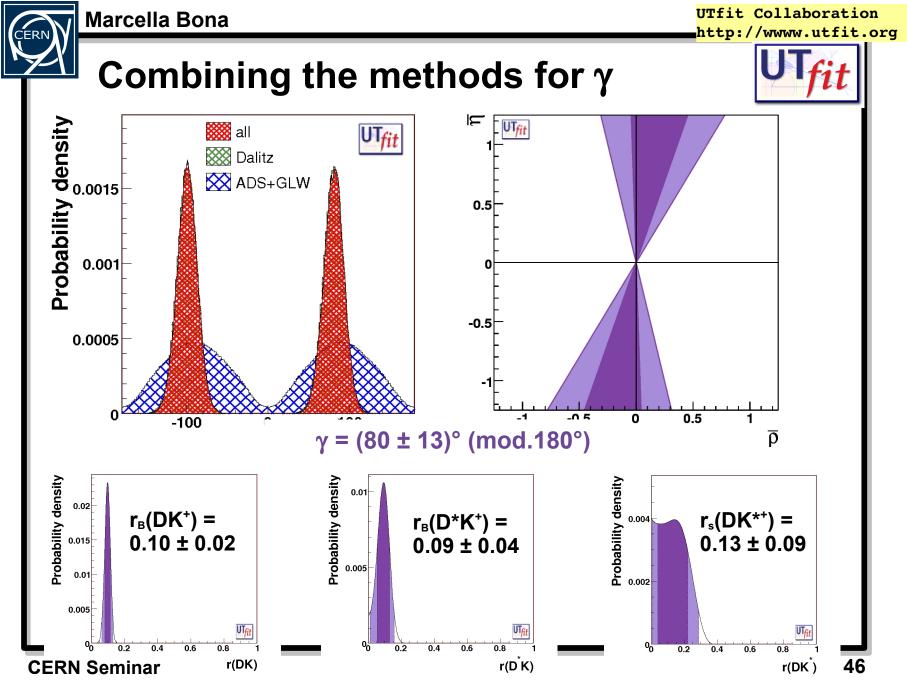

CP fit in Cartesian coordinate

approximately Gaussian distributions (no unphysical zones), small correlation and unbiased behaviour on the physics boundaries



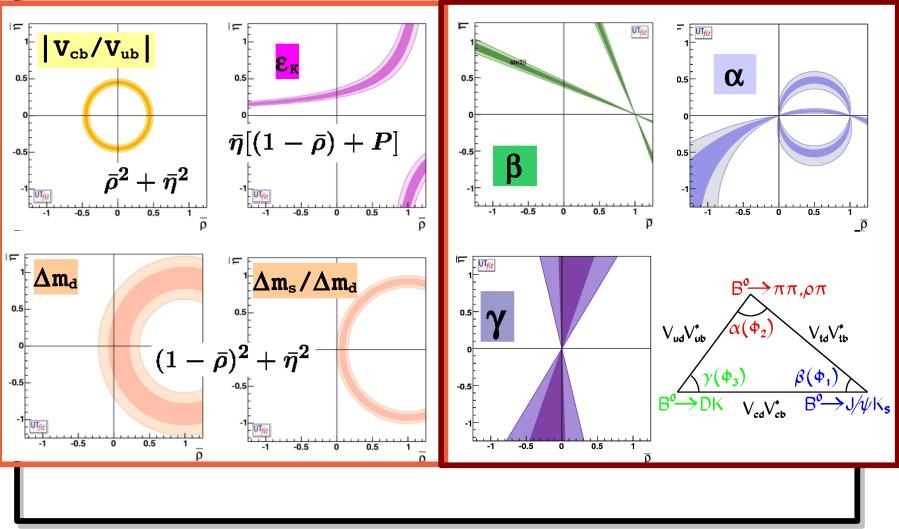




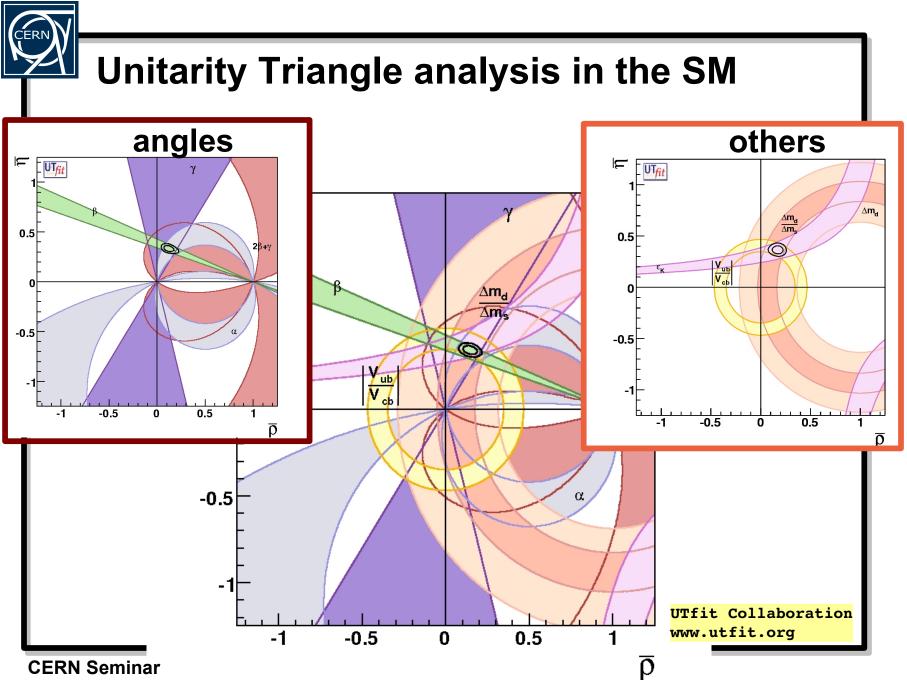



### More ways to $\gamma$

with neutral B's in the final states D<sup>0</sup>K\*<sup>0</sup> with  $D^0 \rightarrow K_s \pi^- \pi^+$  and  $K^* \rightarrow K^- \pi^+$ , the charge of the K from the K\* tags the flavour of the B<sup>0</sup> so no time-dependent analysis + first analysis to extract  $\gamma$  from neutral B  $\rightarrow$  DK BaBar performed it with 371M BB  $\gamma$ ["]<sup>350</sup> 68%  $\gamma = (162 \pm 56)^{\circ} (mod.180^{\circ})$ r₅ (D<sup>0</sup>K<sup>\*0</sup>) < 0.55 @ 95% Prob. 95% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 p again with neutral B's, time-dependent Dalitz plot analysis of the three-body final state  $B^0 \rightarrow D^- K^0 \pi^+$  $\Rightarrow$  interference between b  $\rightarrow$  u and b  $\rightarrow$  c transitions through the mixing: sensitivity to  $2\beta + \gamma$ 


BaBar performed it with 347M BB

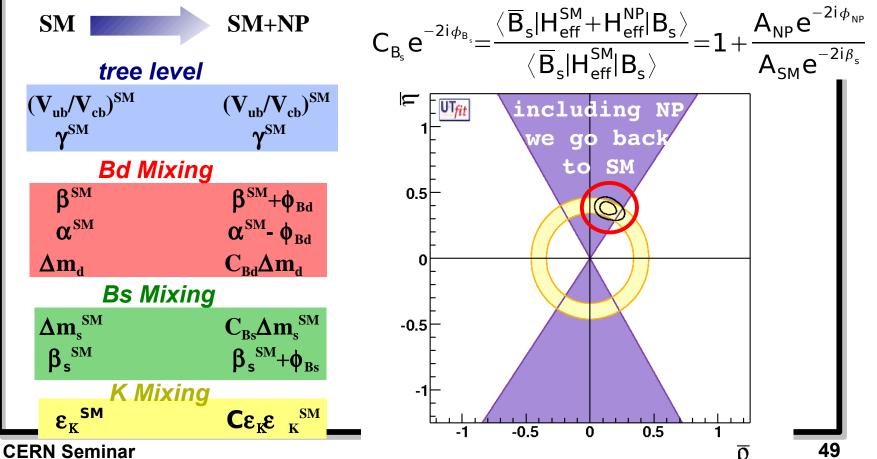
 $2\beta + \gamma = (83 \pm 53 \pm 20)^{\circ} \pmod{180^{\circ}}$ 

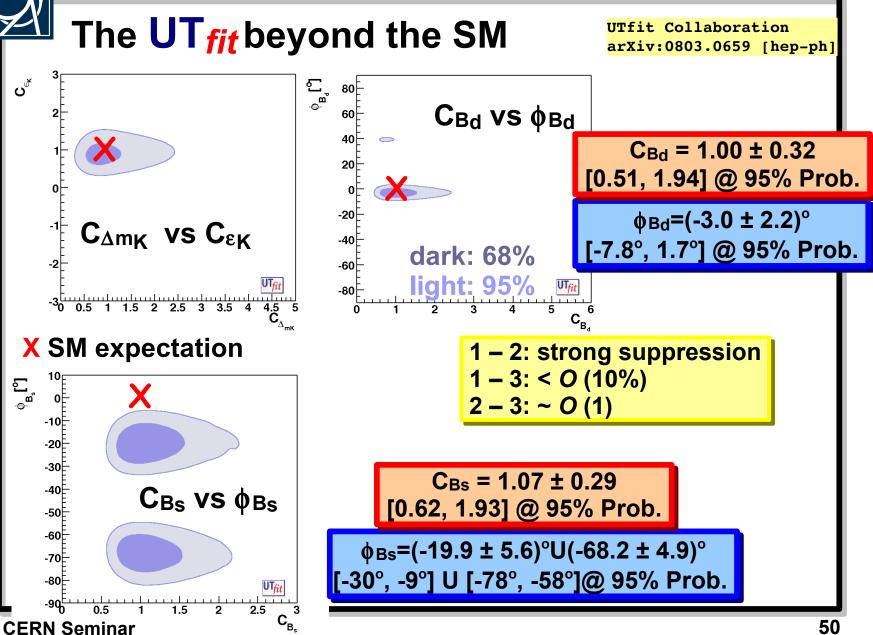



CERN

### Unitarity Triangle analysis in the SM




#### **CERN Seminar**






# Including NP in Unitarity Triangle analysis

All NP effects can be parameterized in terms of one complex parameter for each meson mixing, to be determined in a simultaneous fit with the CKM parameters (now there are enough experimental constraints to do so).







### The future of CKM fits

| LHCb reach from:                   | Inch            |             | SuperB reach from:<br>SuperB Conceptual                                                                                                                                                 | ©2007 V. Lubicz                                            | Z                                   |                                         | -                                     |
|------------------------------------|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|-----------------------------------------|---------------------------------------|
| O. Schneider, 1 <sup>st</sup> LHCb | LHCD            | SuperB      | Design Report,                                                                                                                                                                          | Hadronic                                                   | Current                             | 60 TFlop                                | 1-10 PFlop                            |
| Collaboration Upgrade<br>Workshop  | 2015            | V           | arXiv:0709.0451                                                                                                                                                                         | matrix                                                     | lattice                             | Year                                    | Year                                  |
|                                    | 10/fb (5 years) | 1/ab (1     | month                                                                                                                                                                                   | element                                                    | error                               |                                         | [2015 SuperB]                         |
| ∆m₅                                | 0.07%(+0.5%)    |             | † Y <b>(55))</b>                                                                                                                                                                        | $f_{+}^{K\pi}(0)$                                          | 0.9%<br>(22% on 1-f <sub>+</sub> )  | 0.4%<br>(10% on 1-f <sub>+</sub> )      | < 0.1%<br>(2.4% on 1-f <sub>+</sub> ) |
| A <sup>s</sup> <sub>sL</sub>       | ?               | 0.006       |                                                                                                                                                                                         | Âκ                                                         | 11%                                 | 3%                                      | 1%                                    |
| φ <sub>s</sub> (J/ψ φ)             | 0.01+syst       | 0.14        |                                                                                                                                                                                         | $\mathbf{f}_{\mathrm{B}}$                                  | 14%                                 | 2.5 - 4.0%                              | 1-1.5%                                |
| ψs (Ο/ Ψ Ψ)                        | 0.01/3931       | 0.11        |                                                                                                                                                                                         | $f_{B_5}B_{B_5}^{1/2}$                                     | 13%                                 | 3 - 4%                                  | 1-1.5%                                |
|                                    |                 | 75/ab       | (5 years)                                                                                                                                                                               | ٤                                                          | 5%                                  | 1.5 - 2 %                               | 0.5-0.8 %                             |
| sin2β (J/ψ K <sub>s</sub> )        | 0.010           | 0.005       |                                                                                                                                                                                         | ~                                                          | (26% on ξ-1)                        | (9-12% on ξ-1)                          | (3-4% on ξ-1)                         |
| $\gamma$ (all methods)             | 2.4°            | 1-2°        |                                                                                                                                                                                         | $\mathcal{F}_{\rm B  \rightarrow  D/D  {}^*\!lv}$          | 4%<br>(40% on 1-F)                  | 1.2%<br>(13% on 1-F)                    | 0.5%<br>(5% on 1-F)                   |
| $\alpha$ (all methods)             | <b>4.5°</b>     | <b>1-2°</b> |                                                                                                                                                                                         | $f_{+}^{ B \pi}, \ldots$                                   | 11%                                 | 4 - 5%                                  | 2 - 3%                                |
| V <sub>cb</sub>   (all methods)    | no              | < 1%        |                                                                                                                                                                                         | $T_1^{B \rightarrow K * / \rho}$                           | 13%                                 |                                         | 3 - 4%                                |
| V <sub>ub</sub>   (all methods)    | no              | 1-2%        |                                                                                                                                                                                         |                                                            |                                     | sent and Future, Or<br>QCD Executive Co |                                       |
|                                    | Today           |             |                                                                                                                                                                                         | 2015                                                       |                                     |                                         |                                       |
| 0.i                                |                 |             | γ <u>Δm<sub>g</sub></u><br><u>Δm<sub>g</sub></u><br><u>Δm<sub>g</sub></u><br><u>2β+γ</u><br><u>2β+γ</u><br><u>Δm<sub>d</sub></u><br><u>V<sub>ub</sub></u><br><u>0 0.1 0.2 0.3 0.4 0</u> | 0.5<br>0.4<br>0.3<br>- <sup>ε</sup> κ<br>0.2<br>0.1<br>0.1 | $\frac{\Delta m_{d}}{\Delta m_{e}}$ |                                         | 51                                    |

## Summary and conclusions

- → β is a precision measurement: time to be careful with the calculation of the SM expectation
- α is still limited statistically and by the uncertainty
   of the hadronic picture.

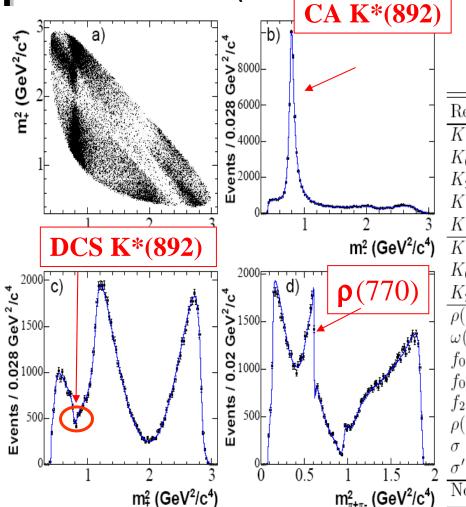
Still we currently have  $\rightarrow \sigma = \sim 10^{\circ}$ 

Tree level: γ extraction still statistical dominated and plenty of room for improvements, new channels, new techniques

The current knowledge still better

that expected  $\rightarrow \sigma = \sim 13^{\circ}$ 

- -> All these constraints are precious for the now precise extraction of  $\rho$  and  $\eta$  parameters
- but above all for the overconstraining of the UTfit: very interesting constraints on NP quantities



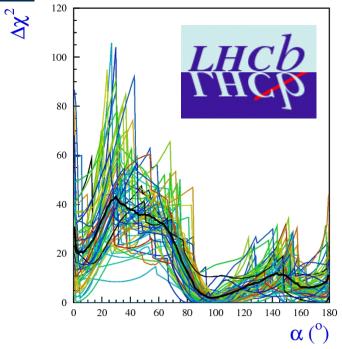

CERN

# **Back up slides**

### Dalitz method: the amplitude model

extract  $A(m_2^2, m_2^2)$  from high-purity tagged  $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^0 \pi^+ \pi^-$  sample use isobar model ( = coherent sum of Breit-Wigner (BW) amplitudes)




16 resonances (3 WS DCS) + 1 NR component  $\chi^2/d.o.f = 1.27$ 

| Resonance         | Amplitude           | Phase (deg)     | Fit fraction   |
|-------------------|---------------------|-----------------|----------------|
| $K^{*}(892)^{-}$  | $1.781\pm0.018$     | $131.0\pm0.82$  | 0.586          |
| $K_0^*(1430)^-$   | $2.447 \pm 0.076$   | $-8.3 \pm 2.5$  | 0.083          |
| $K_2^*(1430)^-$   | $1.054\pm0.056$     | $-54.3 \pm 2.6$ | 0.027          |
| $K^{*}(1410)^{-}$ | $0.515\pm0.087$     | $154 \pm 20$    | 0.004          |
| $K^{*}(1680)^{-}$ | $0.89 \pm 0.30$     | $-139 \pm 14$   | 0.003          |
| $K^{*}(892)^{+}$  | $0.1796 \pm 0.0079$ | $-44.1 \pm 2.5$ | 0.006          |
| $K_0^*(1430)^+$   | $0.368 \pm 0.071$   | $-342\pm8.5$    | 0.002          |
| $K_2^*(1430)^+$   | $0.075\pm0.038$     | $-104 \pm 23$   | 0.000          |
| $\rho(770)$       | 1  (fixed)          | 0  (fixed)      | 0.224          |
| $\omega(782)$     | $0.0391 \pm 0.0016$ | $115.3\pm2.5$   | 0.006          |
| $f_0(980)$        | $0.4817 \pm 0.012$  | $-141.8\pm2.2$  | 0.061          |
| $f_0(1370)$       | $2.25\pm0.30$       | $113.2 \pm 3.7$ | 0.032          |
| $f_2(1270)$       | $0.922 \pm 0.041$   | $-21.3 \pm 3.1$ | 0.030          |
| $ \rho(1450) $    | $0.516 \pm 0.092$   | $38 \pm 13$     | 0.002          |
| σ                 | $1.358\pm0.050$     | $-177.9\pm2.7$  | 0.093          |
| $\sigma'$         | $0.340\pm0.026$     | $153.0\pm3.8$   | 0.013          |
| Non Resonant      | $3.53 \pm 0.44$     | $127.6\pm6.4$   | 0.073          |
|                   |                     |                 | <del>-</del> - |



from previous studies, we know that  $(\gamma, \delta_{\rm R} \text{ and } r_{\rm R})$  are not a good choice from the fit point of view  $\Rightarrow$  no sensitivity to  $\gamma$  if  $r_{B} < 0.10$ (underestimation of the errors)  $\rightarrow$  fit bias on  $r_{B}$  for  $r_{B} \sim 0.10$ (physical bound + low statistics) fit for cartesian coordinates instead: x . v  $4\mathbf{x}_{+} = \mathbf{Re}[\mathbf{r}_{\mathbf{B}} \mathbf{e}^{\mathbf{i}(\delta \pm \gamma)}], \mathbf{y}_{+} = \mathbf{Im}[\mathbf{r}_{\mathbf{B}} \mathbf{e}^{\mathbf{i}(\delta \pm \gamma)}]$ gaussian errors: no unphysical zones → (x+, y+), (x-, y-) uncorrelated unbiased results for all possible r<sub>B</sub> also in the **GLW**:  $x_{\pm} = [\mathbf{R}_{CP+}(1 \mp \mathbf{A}_{CP+}) - \mathbf{R}_{CP-}(1 \mp \mathbf{A}_{CP-})]/4$ 





| Decay Mode                                                                 | Signal              | Background             |
|----------------------------------------------------------------------------|---------------------|------------------------|
| $B^{\pm} \rightarrow D(K^{+}K^{-})K^{\pm}$                                 | 2 <b>6</b> 00, 3200 | $3700 \pm 1000$        |
| $B^{\pm} \rightarrow D(\pi^{+}\pi^{-})K^{\pm}$                             | 900, 1100           | $3600 \pm 1500$        |
| $B^{\pm} \rightarrow D(K^{\pm}\pi^{\mp})K^{\pm}$                           | 28000, 28300        | $17500 \pm 1000$       |
| $B^{\pm} \rightarrow D(K^{\mp}\pi^{\pm})K^{\pm}$                           | 10,400              | $800 \pm 500$          |
| $B^{\pm} \rightarrow D(K^{\pm}\pi^{\mp}\pi^{+}\pi^{-})K^{\pm}$             | 30400, 30700        | $20200 \pm 2500$       |
| $B^{\pm} \rightarrow D(K^{\mp}\pi^{\pm}\pi^{+}\pi^{-})K^{\pm}$             | 20, 410             | $1200\pm360$           |
| $B^{\pm} \rightarrow D(K_S^0 \pi^+ \pi^-) K^{\pm}$                         | 5000                | 1000 - 5000 (90% C.L.) |
| $B^{\pm} \rightarrow D(K_S^0K^+K^-)K^{\pm}$                                | 1000                | 1                      |
| $B^{\pm} \rightarrow D(K^+K^-\pi^+\pi^-)K^{\pm}$                           | 1700                | $1500\pm600$           |
| $B^{\pm} \rightarrow (D\pi^0)(K^{\pm}\pi^{\mp})K^{\pm}$                    | 16800, 16600        | $34300\pm11500$        |
| $B^{\pm} \rightarrow (D\pi^0)(K^{\mp}\pi^{\pm})K^{\pm}$                    | 350, 100            | $4800 \pm 3800$        |
| $B^{\pm} \rightarrow (D\gamma)(K^{\pm}\pi^{\mp})K^{\pm}$                   | 9400, 9300          | $34300 \pm 11500$      |
| $B^{\pm} \rightarrow (D\gamma)(K^{\mp}\pi^{\pm})K^{\pm}$                   | 10, 140             | $4800 \pm 3800$        |
| $B^0, \overline{B}{}^0 \rightarrow D(K^+K^-)K^{*0}, \overline{K}{}^{*0}$   | 240, 450            | < 1000 (90% C.L.)      |
| $B^0, \overline{B}^0 \rightarrow D(\pi^+\pi^-)K^{*0}$                      | 70, 140             | < 1000 (90% C.L.)      |
| $B^0, \overline{B}{}^0 \to D(K^{\pm}\pi^{\mp})K^{*0}, \overline{K}{}^{*0}$ | 1750, 1 <b>6</b> 70 | < 1700 (90% C.L.)      |
| $B^0, \overline{B}^0 \to D(K^{\mp}\pi^{\pm})K^{*0}, \overline{K}^{*0}$     | 350, 2 <b>6</b> 0   | < 1700 (90% C.L.)      |

M.Bona, A.Soni, K.Trabelsi, G.Wilkinson "UT angles from tree decays" arXiv:0801.1833 [hep-ph]

|                       | BF (Now)                 | BF(End '08)  | LHCb               | LHCb                | SBF                  | ITE            |
|-----------------------|--------------------------|--------------|--------------------|---------------------|----------------------|----------------|
| ∫ £dt                 | $\sim 1 \text{ ab}^{-1}$ | 2 ab-1       | 2 fb <sup>-1</sup> | 10 fb <sup>-1</sup> | 50 ab <sup>-1</sup>  |                |
| $\sigma(\alpha)$      | 10° (11%)                | 7° (8%)      | 8.1° (9%)          | $4.6^{\circ} (5\%)$ | $1.5^{\circ}(1.6\%)$ | O(few %)       |
| $\sigma(\sin 2\beta)$ | 0.026(4%)                | 0.023 (3.3%) | 0.015(2.1%)        | 0.007(1%)           | 0.013 (2%)           | $\lesssim 1\%$ |
| $\sigma(\gamma)$      | 30° (46%)                | 15° (23%)    | 4.5° (7%)          | 2.4° (4%)           | 2° (3%)              | O(0.1%)        |

and a zoo of amplitudes  
Charming Penguin 
$$\lambda^2$$
  
 $V_{us} V_{ub}^* \sim \lambda^4$   
 $A(B^0 \rightarrow K^+ \pi^-) = V_{is} V_{ib}^* \times P_1(c)$   
 $A(B^+ \rightarrow K^0 \pi^+) = -V_{is} V_{ib}^* \times P_1(c)$   
 $\sqrt{2} \cdot A(B^+ \rightarrow K^+ \pi^0) = V_{is} V_{ib}^* \times P_1(c)$   
 $\sqrt{2} \cdot A(B^0 \rightarrow K^0 \pi^0) = -V_{is} V_{ib}^* \times P_1(c)$   
 $\sqrt{2} \cdot A(B^0 \rightarrow \pi^0 \pi^0) = -V_{is} V_{ib}^* \times P_1(c)$   
 $\sqrt{2} \cdot A(B^0 \rightarrow \pi^+ \pi^-) = V_{id} V_{ib}^* \times P_1(c)$   
 $\sqrt{2} \cdot A(B^0 \rightarrow \pi^0 \pi^0) = -V_{id} V_{ib}^* \times P_1(c)$   
 $\sqrt{2} \cdot A(B^0 \rightarrow \pi^0 \pi^0) = -V_{id} V_{ib}^* \times P_1(c)$   
 $\sqrt{2} \cdot A(B^0 \rightarrow \pi^0 \pi^0) = -V_{id} V_{ib}^* \times P_1(c)$   
 $\sqrt{2} \cdot A(B^0 \rightarrow \pi^0 \pi^0) = -V_{id} V_{ib}^* \times P_1(c)$   
 $\sqrt{2} \cdot A(B^0 \rightarrow \pi^0 \pi^0) = -V_{id} V_{ib}^* \times P_1(c)$   
 $\sqrt{2} \cdot A(B^0 \rightarrow \pi^0 \pi^0) = -V_{id} V_{ib}^* \times P_1(c)$   
 $A(B^0 \rightarrow \overline{K^0} K^0) = -V_{id} V_{ib}^* \times P_1(c)$   
 $A(B^0 \rightarrow \overline{K^0} K^0) = -V_{id} V_{ib}^* \times P_1(c)$   
 $A(B^0 \rightarrow \overline{K^0} K^0) = -V_{id} V_{ib}^* \times P_1(c)$   
 $V_{ud} V_{ub}^* \times \{A_1 - P_1 Gim(u-c)\}$ 

**BaBar results:**  $\pi\pi$ , K $\pi$  and KK

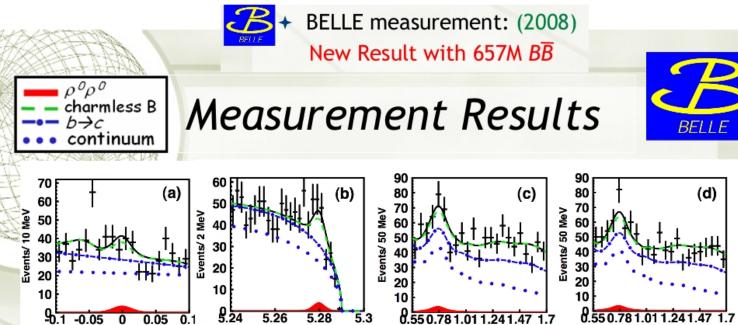
227 million BB BaBar-PUB-06/047

 $\mathbf{E}_{\gamma}^{\mathrm{max}} = \mathbf{M}_{\mathrm{B}} - \mathbf{m}_{\mathrm{h}+} - \mathbf{m}_{\mathrm{h}-}$ 

Baracchini,

### improved statistics asks for radiative corrections + to extract the non-radiative BR:

$$\Gamma_{P_1P_2}^{incl}(E^{max}) = \Gamma(H \to P_1P_2 + n\gamma) |_{\sum E_{\gamma} < E^{max}} = \Gamma_{P_1P_2} + \Gamma_{P_1P_2 + n\gamma}(E^{max})$$


 $\Gamma_{P_1P_2}^{incl}(E^{max}) = \Gamma_{P_1P_2}^0 G_{P_1P_2}(E^{max})$  where  $E_{\gamma}^{max}$  is the intrinsic energy resolution, or else the minimum energy for which we can distinguish the photon

- in MC: PHOTOS produces  $h^+h^- + n\gamma$ ,  $E_{\gamma}^{max}$  depends on phase space • efficiency from MC, we obtain BR(B  $\rightarrow h^+h^- + n\gamma$ )
  - not useful for phenomenology: extrapolation of non-radiative BR clear only for small E<sub>γ</sub> [scalar QED valid up to O(E<sub>γ</sub><sup>max</sup>/M<sub>B</sub>)]

not clean from the experimental point of view: is PHOTOS able to reproduce the whole phase space?

- → ΔE is related to  $E_{\gamma}^{\text{max}}$  so we consider events with  $|\Delta E| < X$ : → we obtain BR(B → h<sup>+</sup>h<sup>-</sup> + nγ)|<sub>E\_{\gamma} < E\_{\text{max}}} since X = f( $E_{\gamma}^{\text{max}}$ )</sub>
- from MC: estimate of difference between  $\frac{M}{\pi^+}$ a  $\Delta E$  cut and a  $E_{\gamma}$  cut  $K^+$ **1.0-2.6%**

| Iode             | ${ m BR}_{E_\gamma(MeV)}(10^{-6})$ | $G(E_{\gamma}^{\max})$         | ${ m BR}^0(10^{-6})$ |
|------------------|------------------------------------|--------------------------------|----------------------|
| $+\pi^{-}$       | $5.4 \pm 0.4 \pm 0.3_{ 150 }$      |                                |                      |
| $\pi^{+}\pi^{-}$ | $18.6 \pm 0.6 \pm 0.6_{ 105 }$     | $0.944 \pm 0.005$              | $19.7\pm0.6\pm0.6$   |
| $K^+K^-$         |                                    | $\boldsymbol{0.952 \pm 0.005}$ |                      |



M<sub>bc</sub> (GeV/c<sup>2</sup>)

| Mode              | Yield                                   | Eff.(%) | Σ             | BF (x10 <sup>-6</sup> )      | UL (x10 <sup>-6</sup> )         |
|-------------------|-----------------------------------------|---------|---------------|------------------------------|---------------------------------|
| $\rho^0 \rho^0$   | 24.5 <sup>+23.6+9.7</sup><br>_22.1-9.9  | 9.16    | 1.0           | $0.4 \pm 0.4 \pm 0.2$        | <1.0 (assume f <sub>L</sub> =1) |
| $ρ^0$ ππ          | $161.2^{+61.2+26.0}_{-59.4-28.5}$       | 2.90    | 1.3           | 5.9+3.5+2.7<br>-3.4-2.8      | <11.9                           |
| 4π                | 112.5+67.4+51.5                         | 1.98    | 2.5           | $12.4_{-4.6-2.2}^{+4.7+2.0}$ | <19.0                           |
| $\rho^0 f_0$      | $-11.8^{+14.5+4.9}_{-12.9-3.6}$         | 5.10    | 0.0           | 0.0                          | <0.6                            |
| $f_0 f_0$         | $-7.7^{+4.7+3.0}_{-3.5-2.9}$            | 2.75    | 0.0           | 0.0                          | <0.4                            |
| f <sub>0</sub> ππ | 6.3 <sup>+37.0+18.0</sup><br>-34.7-18.1 | 1.55    | 0.0           | $0.6^{+3.6}_{-3.4} \pm 1.8$  | <7.3                            |
| 2008/02/2         | 28                                      | La      | Thuile, Italy |                              | 11                              |

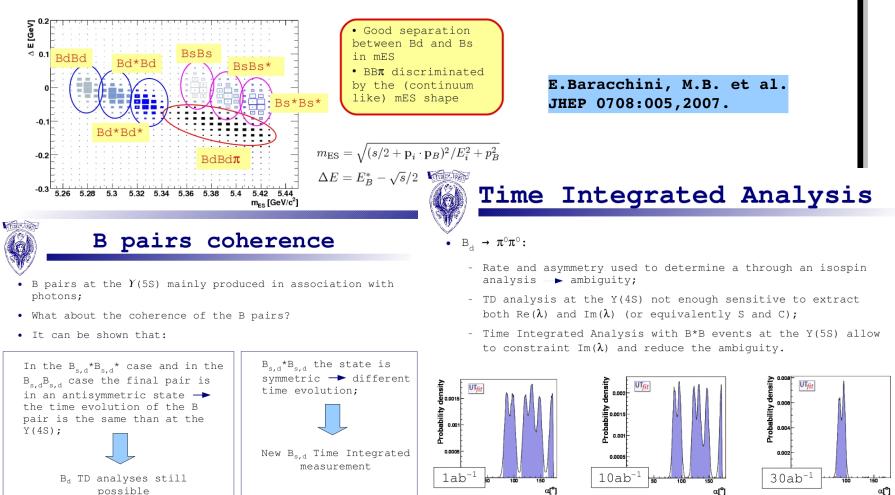
M<sub>1</sub>(ππ) (GeV/c<sup>2</sup>)

-0.05

0.05

0

∆E (GeV)


0.1

M<sub>2</sub>(ππ) (GeV/c<sup>2</sup>)



### Event reconstruction

- Reconstruction techniques inherited from current B-factories:
  - We don't reconstruct the additional particles  $(\pi\,,\gamma)$  produced in the Y(5S) decay chain;
  - separation of different components using kinematic variables.



INFN

7

Francesco Renga - BNM 2008

Francesco Renga - BNM 2008

INFN

9



68% CL

95% CL

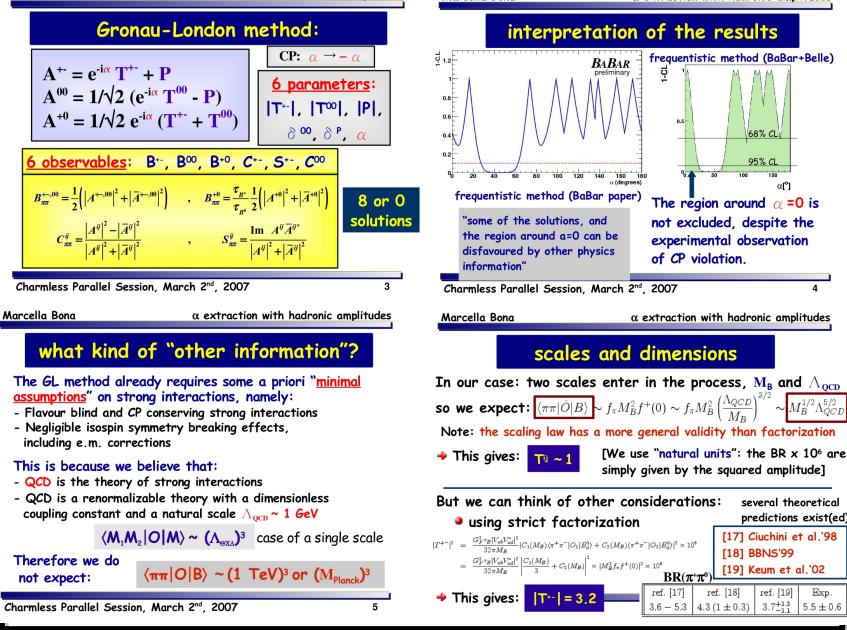
α**[°]** 

several theoretical

[17] Ciuchini et al.'98

[19] Keum et al.'02

ref. [19]


 $3.7^{+1.3}_{-1.1}$ 

[18] BBNS'99

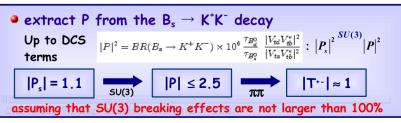
predictions exist(ed)

Exp.

 $5.5 \pm 0.6$ 



Marcella Bona

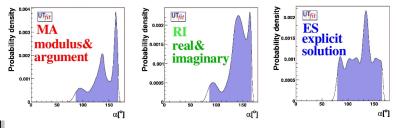

#### further considerations

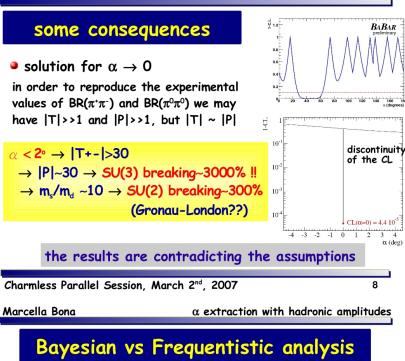
scaling between B and D decays

In the heavy quark limit, the dependence on  $\mathbf{M}_{\mathrm{H}}$ 

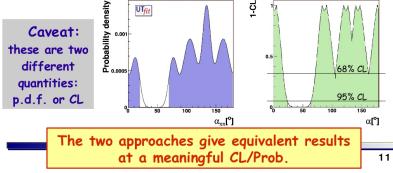
cancels in the decay rate.

$$R = \frac{|T^{+-}(B_d^0 \to \pi^+\pi^-)|^2}{|T^{+-}(D^0 \to \pi^+\pi^-)|^2} \sim \frac{|V_{ub}V_{ud}^*|^2}{|V_{cd}V_{ud}^*|^2} \qquad |T^{+-}|^2 = BR(D^0 \to \pi^+\pi^-) \times 10^6 \frac{\tau_{B_d^0}}{\tau_{D^0}}R$$
  
This gives:
$$|T^{+-}| = 1.3$$

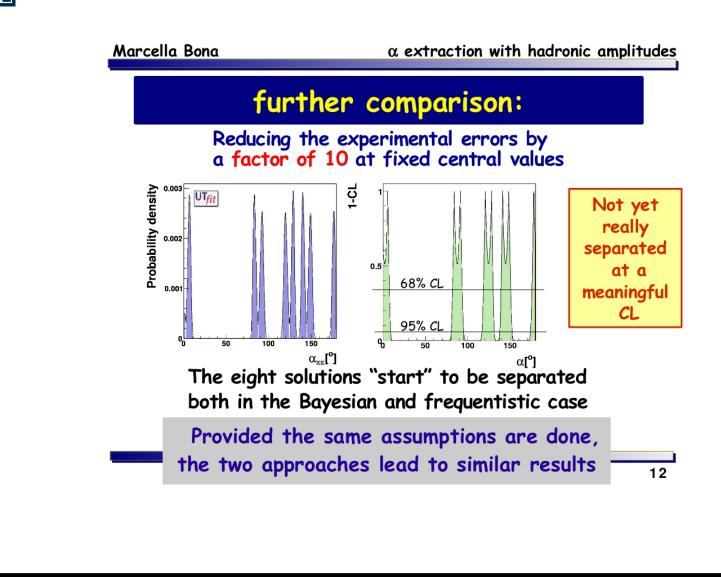




#### Marcella Bona

 $\alpha$  extraction with hadronic amplitudes


using the available information (priors)  
In previous UTfit analyses: 
$$|T^{ij}| \le 10$$
,  $|P| \le 10$   
Now:  $|T^{ij}| \le 10$ ,  $|P| \le 2.5$ ,  
arbitrary phases  
1) The information on the matrix elements has the

effect of eliminating some of the eight solutions, including the pathological solution at  $\alpha$  ~0






Compare the 2 methods using the same assumptions - In the Bayesian approach: extract BR's and CP parameters with gaussian p.d.f. according with their experimental values and errors - In the frequentistic analysis: no additional information on the hadronic amplitudes is introduced (besides the GL method)



 $\alpha$  extraction with hadronic amplitudes



## **BaBar-Belle comparison:**

For S:

- 1. The average per event errors are about the same for Belle and BaBar; there are some specific cases where BaBar has better errors, e.g. **p**0K0, because of the 5-layer SVT
- 2. The yields are generally much higher for BaBar vs Belle, due to the use of multivariate maximum likelihoods instead of cuts
- 3. The product of same per event errors times higher yields gives much better performance, typically 20-50% and averaging around 43%.

For C:

- 1. The average per event errors are worse for BaBar than for Belle; there are some specific cases where BaBar has better errors, e.g. **p**0K0
- 2. The yields are generally much higher for BaBar vs Belle, same as for S
- 3. The product of smaller per event errors times higher yields still gives better performance in most cases, although it is less of an advantage. This ends up being about a 9% advantage on average.