Rare kaon decays at the FCC injectors

Matthew Moulson NA62 Frascati/CERN

FCC Working Group on Physics with the Injectors CERN, 29 September 2014

Outline

- 1. Kaon physics and rare decays
- 2. Current and planned experiments for rare kaon decays
- 3. Studies for future experiments at the SPS
- 4. Rare kaon decays at the FCC injectors

NB: 1 sly (standard live year) \equiv 10⁷ s

Current topics in kaon physics

Traditional observables: CP violation in K_SK_L (ε , ε'/ε), Δm_K

Much progress on lattice, but likely to remain theory-limited for several years

Precision observables: V_{us} , $R_K = \Gamma(K \rightarrow ev)/\Gamma(K \rightarrow \mu v)$

Not theory limited, but experimental results hard to improve upon

K decays with explicit LFV

 K_L : Excellent experimental limits, tight model constraints, further progress hard

 K^+ : Searches can be improved by 1-2 orders of magnitude to catch up to K_L

FCNC decays: Clean short-distance probes

 $\pi v \bar{v}$: SD dominated, SM intrinsic theory uncertainties at the few % level

 $\pi^0\ell^+\ell^-$: Nominally easier experimental signatures, some irreducible backgrounds

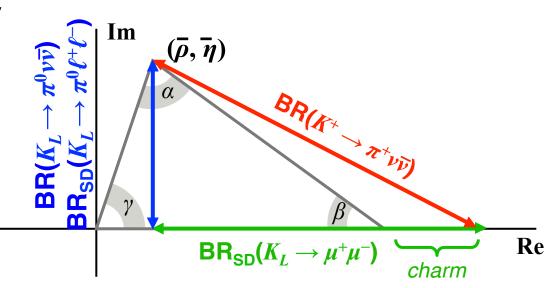
Larger theoretical uncertainties, need progress on ancillary measurements

Searches for heavy neutral leptons in *K* decays

Other topics:

CPT limits, K_SK_L interferometry, T-odd μ polarization in $K_{\mu 3}$

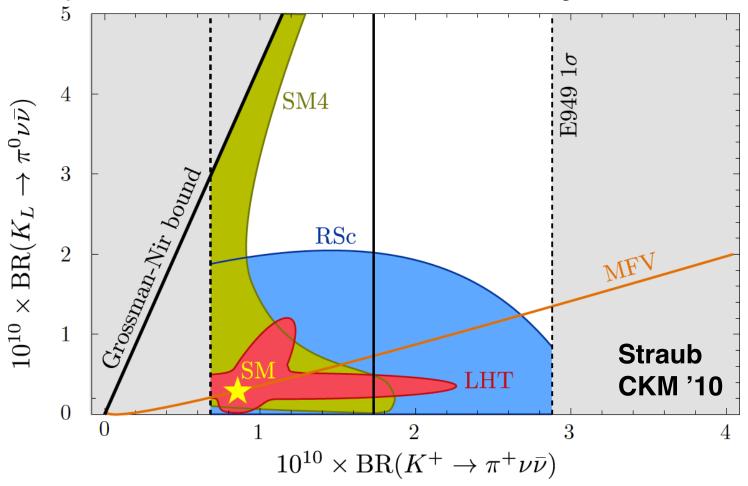
Rare kaon decays


Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR × 10 ⁻¹¹	Exp. BR × 10 ⁻¹¹
$K_L o \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28 [†]
$K_L ightarrow \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38 [†]
$K^+ \longrightarrow \pi^+ u \overline{ u}$	90%	4%	7.8 ± 0.8	17 ± 11
$K_L ightarrow \pi^0 u \overline{ u}$	>99%	2%	2.4 ± 0.4	< 2600 [†]

^{*}Approx. error on LD-subtracted rate excluding parametric contributions †90% CL

FCNC processes dominated by Z-penguin and box diagrams

Rates related to V_{CKM} with minimal non-parametric uncertainty


V_{CKM} overconstrained: look for NP in specific channels

$K \rightarrow \pi \nu \bar{\nu}$ and new physics

New physics affect BRs differently for different channels

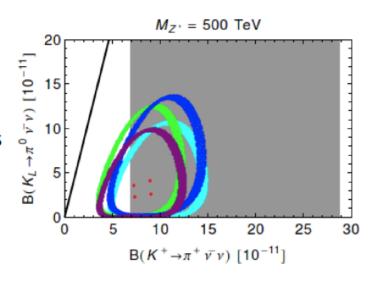
Multiple measurements can discriminate among NP scenarios

SM4: SM with 4th generation (Buras et al. '10) LHT: Littlest Higgs with T parity (Blanke '10)

RSc: Custodial Randall-Sundrum (Blanke '09) MFV: Minimal flavor violation (Hurth et al. '09)

$K \rightarrow \pi \nu \bar{\nu}$ and new physics

Hors d'Oeuvre


New Physics Reach of Flavour Physics

A Glimpse at the Zeptouniverse

M. Blanke, CKM 2014

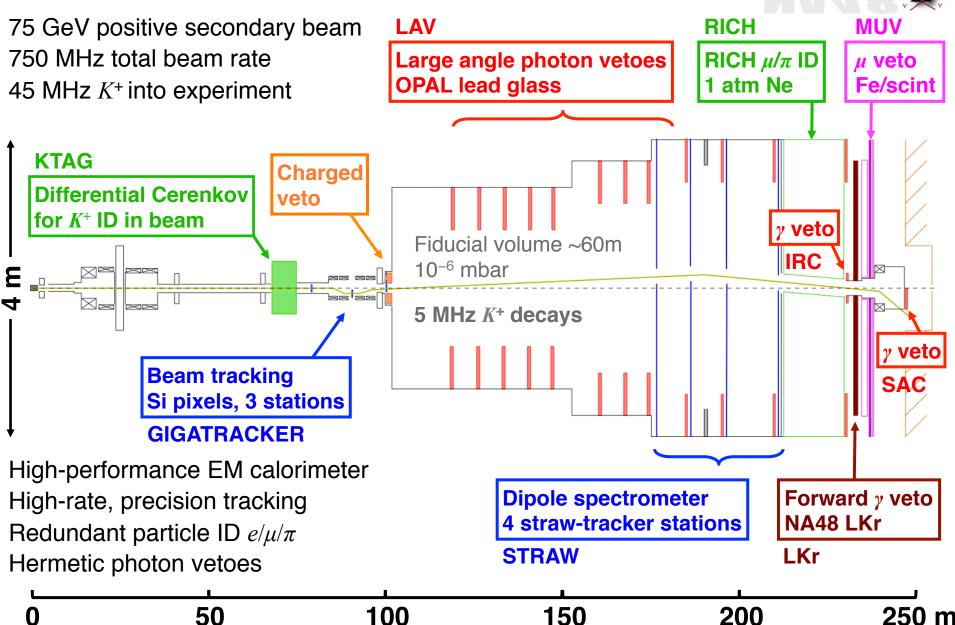
recent analysis of tree level flavour changing Z': Buras et al. (2014)

- $K \to \pi \nu \bar{\nu}$ decays sensitive to scales up to $2000\, {
 m TeV}$ if left- and right-handed FV couplings are present
- (fine-tuned) cancellation of effects in $K^0 \bar{K}^0$ mixing required
- new physics reach of B decays lower by an order of magnitude ($\sim 100\,\text{TeV!}$)

 \triangleright high precision in rare K and B decays is crucial!

M. Blanke

Flavour Physics Beyond the Standard Model


Rare *K* decays: World outlook

Expt.	Primary beam (E GeV)	Secondary beam (E GeV)	Start date + run years	SM evts	Status
NA62	SPS (400)	positive (75)	2014+3 (1 sly)	100	Ready
ORKA	FNAL MI (95)	K ⁺ (0.6, stopped)	2020+5 (9 sly)	1000	Proposed
кото	JPARC-I (30)	neutral (2 peak)	2014+3 (3 sly)	~3	Ready
KOTO/2	JPARC-II (30)	neutral (~2 peak)	2025?	100	Concept
$FNALK_{\!L}$	Project X (3)	neutral (0.7 peak)	2030?	1000	Concept

- ORKA effectively canceled with release of P5 report on 22 May
- NA62 is the only experiment looking at $K^+ \to \pi^+ \nu \bar{\nu}$
- KOTO is the only experiment looking at $K_L \to \pi^0 \nu \bar{\nu}$
- No experiment is looking at $K_L \to \pi^0 \ell^+ \ell^-$

The NA62 experiment at the SPS

NA62: Status and future

Start of NA62 running: 6 October 2014

Goal: Measure BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) to 10%

Collect ~100 signal events with S/B > 10

Other elements of physics program:

- Measurement of R_K to ~0.2%
- Searches for LFV K^+ and π^0 decays, heavy neutral leptons, dark photons
- ChPT tests & precision BR measurements

Longer-term future: NA62 could be a 1000-event experiment

- 100 events/sly → 1000 events, with minor upgrades + extra running time
- Incremental upgrades to trigger and readout are in the pipeline
- Potential for additional upgrades will become apparent when data arrive

Suppose in 2022 NA62 has measured BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) to < 5% ?

2014-2017 run (0.8 sly):

Intensity: $3 \times 10^{12} p/16.8 s$

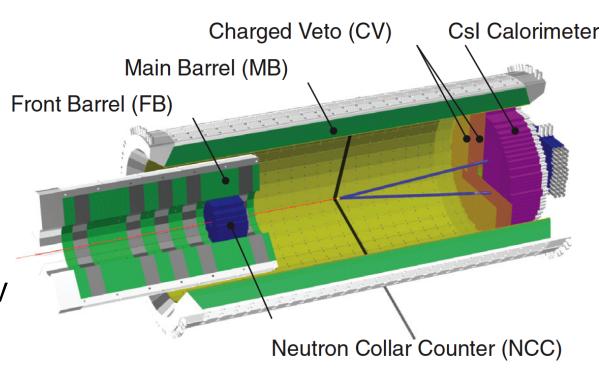
 K^{+} decays in FV: **10**¹³

Signal acceptance: 10%

Background rejection: 10⁻¹²

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at J-PARC

Primary beam: 30 GeV p


 $2 \times 10^{14} p/3.3 s = 300 kW$

Neutral beam (16°)

 $\langle p(K_L) \rangle = 2.1 \text{ GeV}$

50% of K_L have 0.7-2.4 GeV

9 μsr "pencil" beam

- Started data taking in May 2013
- Halted right after startup due to an accident in the Hadron Hall
- Operations expected to resume in late 2014/early 2015
- Intensity now \sim 2 × 10¹³ p per 3.3 sec (25 kW)
- Upgrade path to increase intensity by 4x "within a few years"

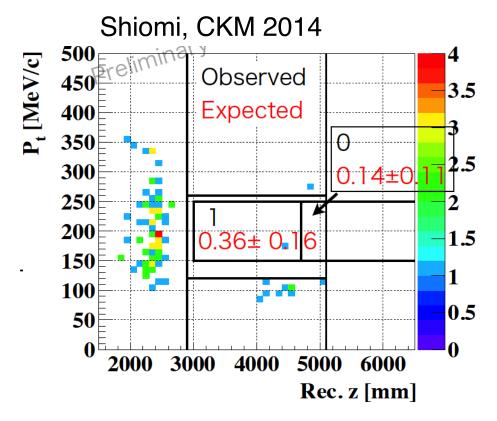
KOTO: Status and future

Proposal:

 $300 \text{ kW} \times 3 \text{ sly}$

SES 8×10^{-12} (3.5 SM evts)

S/B = 1.4


Current status:

25 kW x 100 hrs

SES 1.3×10^{-8}

1 event (0.36 expected)

- Beam power will gradually increase to 100 kW
- Meet original goal by 2018?

Future: Strong intention to upgrade to ~100 event sensitivity

- Exploring upgrade possibilities to increase sensitivity
- Hope to get to ~10 SM evts/sly for 100 kW of beam power
- Indicative timescale: data taking starting 2025?
- No proposal at this time (chapter on Step 2 in original proposal)

PRIN project: $K_L \rightarrow \pi^0 \nu \bar{\nu}$ at the SPS

NA62 Italy subset has funding for feasibility studies for a K_L experiment PRIN grant — Italian Ministry of Education 36 months (2/2013 — 2/2016) — 7 university/INFN groups FERRARA, FIRENZE, FRASCATI, NAPOLI, PERUGIA, PISA, TOR VERGATA, TORINO

Estimate cost, timescale, and performance for an experiment to measure $BR(K_L \to \pi^0 \nu \bar{\nu})$ at the SPS

- Initially hoped to reuse much of the existing NA62 apparatus
- Early simulations indicated that a substantial redesign would be needed
- However, PRIN project still focused on a moderate cost (log₁₀ CHF ~ 7.5) experiment that can operate in ECN3 and make use of the NA48 LKr as the primary veto
- Real work started Fall 2013
- Currently ~ 7 people working part time, phone meetings every 2-3 weeks

$K_L \to \pi^0 \nu \bar{\nu}$: Questions to address

What are the pros and cons of a $K_L \to \pi^0 \nu \bar{\nu}$ experiment at high energy?

What is the intensity and composition of the neutral beam? What can we do to suppress beam photons?

What performance will be required for large-angle photon vetos?

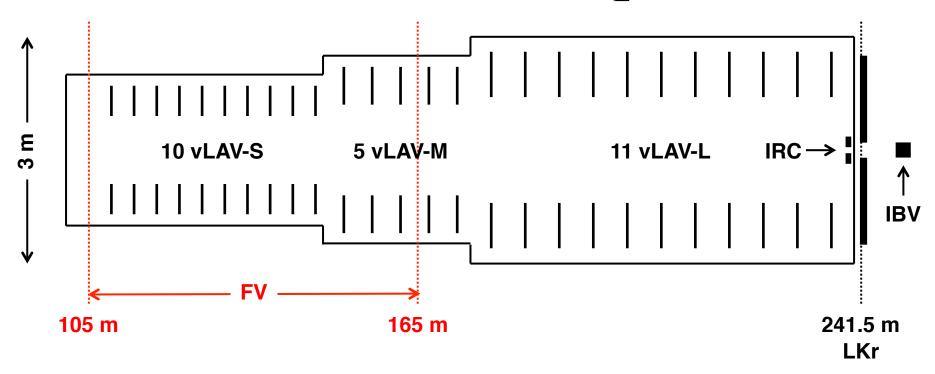
Is the performance of the NA48 LKr calorimeter suitable?

Can a preshower detector in front of LKr provide useful geometrical constraints?

What will be required in terms of charged-particle vetos?

What technology is needed for the in-beam veto to stop photons from escaping downstream through the beam pipe?

How to cope with GHz fluxes of beam photons and neutrons?

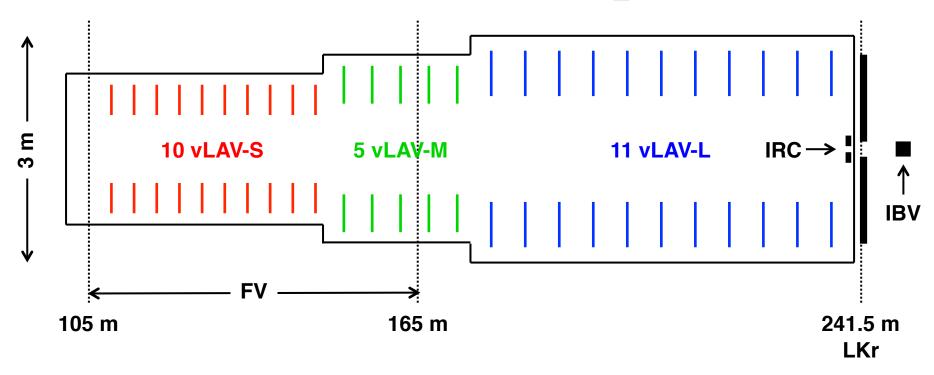

What baseline architecture to adopt for triggering/data acquisition?

PRIN studies: Assumed beam parameters

Possibility of a neutral beam forseen in the NA62 Technical Proposal: \rightarrow Slight changes to production angle and upstream beam optics Running for $\pi^0 v \bar{v}$ and $\pi^0 \ell^+ \ell^-$ requires substantial intensity increase!

	NA62 K ⁺ beam	$PRINK_L$ beam
Primary intensity (ppp)	3×10^{12}	2.4×10^{13}
Production angle for secondary (mrad)	0	2.4
Angular acceptance (µsr)	12.7	0.125
Momentum	75 GeV ±1%	97 GeV (mean) 40-140 GeV (50% peak)
Rates into FV	750 total 525 π 170 p 45 K^+	3000 total 2000 γ 800 n 60 K_L
K decays in FV	4.5 MHz 10 ¹³ /sly	1.7 MHz 3 × 10 ¹² /sly

PRIN simulation for $K_L \rightarrow \pi^0 \nu \bar{\nu}$

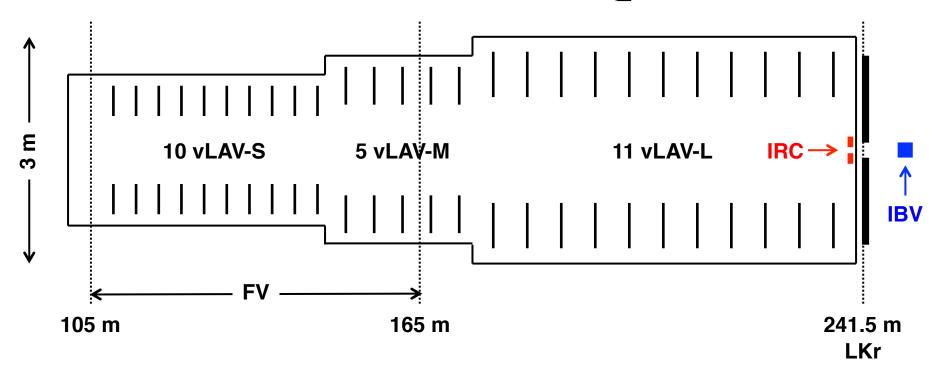


Roughly same vacuum tank layout and fiducial volume as NA62

FV starts ~105 m downstream of target – decay away hyperons About 2.7% of K_L in beam decay in FV

~2 GHz of photons from target: Need beam sweeper to reduce > 10× May require innovative approach: Iridium monocrystal?

PRIN simulation for $K_L \rightarrow \pi^0 \nu \bar{\nu}$

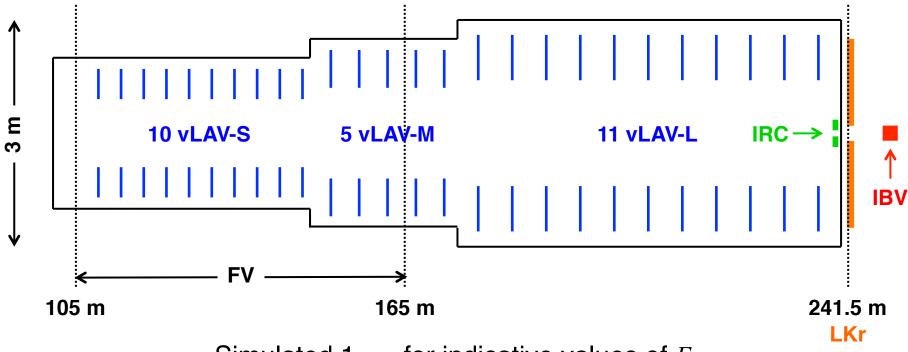

26 new large-angle photon veto stations (vLAV)

3 sizes, radii similar to NA62, at intervals of 4 to 6 m

Hermetic coverage out to 100 mrad for E_{ν} down to 20 MeV

Baseline technology: Scintillator/tile with WLS readout, like CKM VVS Assumed inefficiency based on E949 and CKM VVS experience

PRIN simulation for $K_L \rightarrow \pi^0 \nu \bar{\nu}$



New small-angle photon veto systems (IRC, IBV)

Must be relatively insensitive to 800 MHz of beam neutrons Amdist this background, must reject γ from $\pi^0\pi^0$ to 10^{-3} level: $\sigma_t < 300$ ps Possible solutions:

- Dense inorganic Cerenkov crystal veto (NBWO, PbF₂, PWO)
- Converter + NA62 Gigatracker (Si pixel)-based veto

Photon veto efficiencies for simulation

Simulated 1 – ε for indicative values of E_{ν}

vL	AV	LF	K r	IR	C	IB	BV
From E949,	CKM VVS	Standard N	A62 values	Required p	erformance	Required p	erformance
< 20 MeV	1	< 1 GeV	1	< 1 GeV	1	< 1 GeV	1
200 MeV	0.5%	1 GeV	0.1%	> 1 GeV	3×10^{-5}	> 1 GeV	3×10^{-4}
>0.5 GeV	5×10^{-6}	>10 GeV	8×10^{-6}				

PRIN simulation: Current status

Only $K_L \rightarrow \pi^0 \pi^0$ background seriously studied to date:

- Accept only events with 2 γ s in LKr and no hits in LAV, IRC, SAC ($\varepsilon_{sig} = 19\%$)
- Select events with $z_{\rm rec}(m_{\gamma\gamma}=m_{\pi0})$ in FV and $p_{\perp \rm rec}(\pi^0)>0.1$ GeV $(\varepsilon_{\rm sig}=87\%)$

Expected results/1 sly: $3 \times 10^{12} K_L$ decays in FV

- ~10 signal evts
- ~10 $\pi^0\pi^0$ background evts

What does this imply?

- Sensitivity about same as KOTO Step 2 at 100 kW beam power
- However, acceptance estimate is far from final!
- Experiment has significant cost (50 MCHF?) and long lead time (Run 4) Extensive R&D, prototyping, construction work necessary

Should aim for a 100-event experiment (> 30 events/sly)

$K_L \rightarrow \pi^0 v \bar{v}$ beyond the PRIN paradigm

Main handle on a better measurement is increased intensity: $3 \times 10^{12} K_L$ decays in FV = 70 SM events before efficiencies

Can we do better with the experiment?

- Increase angular acceptance of beam
 Present beam divergence = 5 cm at LKr → new small-angle vetoes?
- Increase FV acceptance
 Total length is important for background rejection (buffer zones)
 Decrease beam energy?
- Increase forward calorimeter acceptance
 New calorimeter with diameter 2x larger than NA48 LKr?
- Increase background rejection:

Better efficiency for LKr in range 1-10 GeV?

LKr efficiency as a photon veto will be studied well in NA62!

Increase coverage of large-angle photon vetoes?

Explore use preradiator to provide additional constraints?

Rethink the basic idea of a $K_L \to \pi^0 v \bar{v}$ experiment at high energy?

PRIN studies: $K_L \rightarrow \pi^0 \ell^+ \ell^-$

$$K_L\! o \pi^0\ell^+\ell^-$$
 vs $K\! o \pi var v$:

 Measurements are complementary and can help to discriminate among NP models

Different operators contribute to $K_L \to \pi^0 \ell^+ \ell^-$ and $K \to \pi \nu \bar{\nu}$

- Nominally easier experimental signatures for $\pi^0\ell^+\ell^-$, but some irreducible backgrounds (esp. for $\pi^0e^+e^-$)
- Larger theoretical uncertainties, need progress on ancillary measurements such as $BR(K_S \to \pi^0 \ell^+ \ell^-)$

Modifications to NA62 needed for $K_L o \pi^0 \ell^+ \ell^-$ are straightforward

- Removal of CEDAR, Gigatracker
- Realignment of straws, RICH; new IRC
- Possibly new SAC to handle higher rates

Potential for $K_L \to \pi^0 \ell^+ \ell^-$ experiment was studied by NA48

$K_L \rightarrow \pi^0 \ell^+ \ell^-$ with NA62 setup?

Extrapolated from studies for NA48

Assuming 1 sly at $2.4 \times 10^{13} \rightarrow 3 \times 10^{12} K_L$ decays in FV

	$K_L ightarrow \pi^0 e^+ e^-$	$K_L ightarrow \pi^0 \mu^+ \mu^-$
SM BR	3.5×10^{-11}	1.4×10^{-11}
Acceptance	3%	18%
SM signal events	~3	~8
S/B	~1/10	~1/6

 $K_L \to \pi^0 e^+ e^-$ channel is plagued by $K_L \to e^+ e^- \gamma \gamma$ background

- Like $K_L \rightarrow \gamma \gamma$ with internal conversion + bremsstrahlung
- 3% acceptance for $K_L \to \pi^0 e^+ e^-$ reflects tight cuts on Dalitz plot to reject
- Need to explore other strategies: statistical separation, kinematic fitting
- NA62 has better 2-3× better mass resolution on ℓℓ vertex than NA48

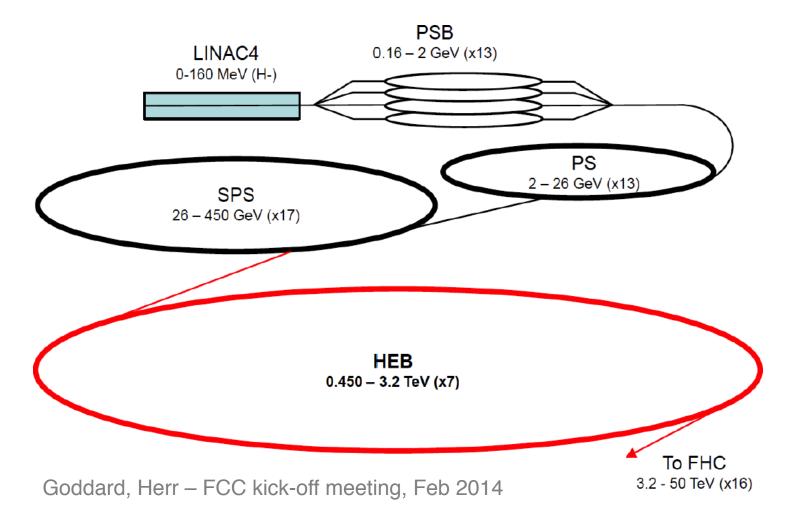
Continuing to study in context of PRIN project

Outlook: Rare kaon decays at the SPS

The Present: NA62 in Run 2

• Assume dedicated to $K^+ \to \pi^+ \nu \bar{\nu}$ and related studies until LS2 in 2018

Various possibilities for Run 3


- Upgrades to NA62 to improve precision on $K^+ \to \pi^+ \nu \bar{\nu}$
- Switch to neutral beam; pursue $K_L \to \pi^0 \ell^+ \ell^-$ and prototype studies for $\pi^0 \nu \bar{\nu}$
- Data also useful for LFV, heavy neutral lepton searches, etc.

Long-Term Future: Run 4

- Best time to run a next-generation $K_L \to \pi^0 \nu \bar{\nu}$ experiment
- $K_L \rightarrow \pi^0 \nu \bar{\nu}$ requires ambition and will have a long development time

Rare kaon experiments at FCC injectors

Which injector?

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at the LEB (PS)

Most $K_L \to \pi^0 v \bar{v}$ experiments discussed to date have $p(K_L) \sim 1$ GeV Classic design for a PS experiment would be similar to KOTO:

- Pencil beam
- Hermetic coverage of decay volume with high-efficiency vetoes

What slow-extracted beam (SEB) intensity possible at PS now?

Assume PS can supply p to fixed target at same rate as SPS This limit is from SPS magnet power consumption: Maybe PS can do a little better

- 1. At present: $4.5 \times 10^{13} p/10 s$ About equal to KOTO now – about $10 \times less$ than J-PARC goal
- 2. After (hypothetical) HL-LHC upgrade: $7 \times 10^{13} p/10 s$

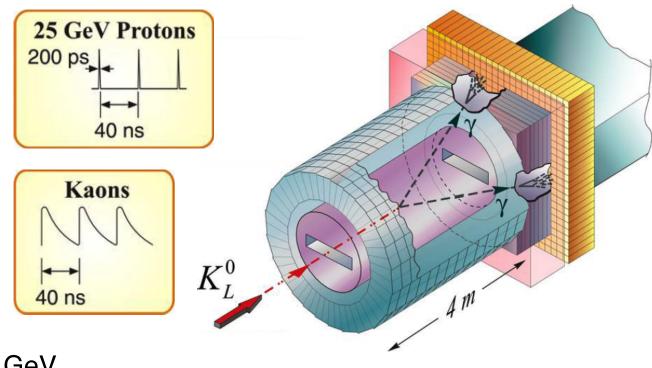
Significant work on PS needed for high-intensity SEB

- Need new beamline and experimental facility
- Need work on PS itself for the HL-LHC upgrade

Could it be possible to implement new features?

KOPIO: Extra constraints for $K_L \rightarrow \pi^0 \nu \bar{\nu}$

Brookhaven AGS Cancelled 2005


Primary: 26 GeV p

 $10^{14} p/7.2 s$

Neutral beam (43°)

 $\langle p(K_L) \rangle = 0.9 \text{ GeV}$

50% of K_L have 0.5-1.2 GeV

Microbunched beam from AGS: Measure $p(K_L)$ by time of flight 200 ps every 40 ns with 10^{-3} extinction between microbunches

Flat beam: Increase solid angle bite to 360 μ sr to increase K_L flux

Preradiator before calorimeter: Reconstruct angle of incidence for γ s

Sensitivity: 180 SM evts in 12000 hrs (~4 sly)

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at the MEB (SPS)

Conclusion of PRIN studies:

 $2.4 \times 10^{13} \, p/16.8 \, s \rightarrow 10 \, events/sly \, with \, S/B = 1$

Better performance would require substantial intensity increase

2.4 × 10¹³ ppp not currently available in North Area*

Max. intensity from SPS to North Area (TT20): 4×10^{13} ppp

Must be divided among users: T2 + T4 + T6

Target areas and transfer lines would require upgrades

- Minimization of consequences of beam loss
- Additional shielding against continuous small losses
- Study issues of equipment survival, e.g., TAX motors
- Ventilation, zone segmentation, etc.

1.5×10^{13} may be possible on T10 (NA62)

Time = "years"; Cost = "many MCHF"

*Conversations with L. Gatignon, N. Doble

A North-Area high intensity facility?

SHiP: Search for heavy neutral leptons from *D* decays in target Proposal includes new high-intensity facility in North Area: Beamline, target bunker, and experimental area

Preliminary project study and cost estimate for infrastructure done by CERN-EN (EN-DH-2014-007):

Beam intensity:

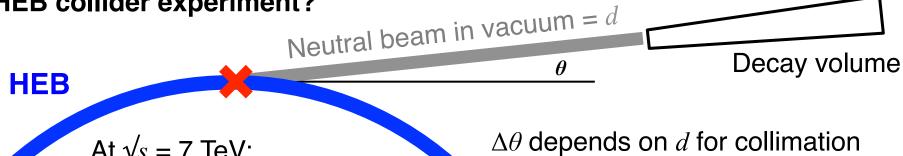
- Initially $> 4.5 \times 10^{13}$ ppp
- Up to 7 × 10¹³ ppp if PS-SPS upgraded for HL-LHC

Physics start: Run 4

Infrastructure costs: 113 MCHF

Is 7×10^{13} ppp a reasonable assumption for fixed-target at FCC-MEB? Could it become available sooner than rest of FCC (e.g., Run 4)?

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at the HEB


Acceptance for K_L decays in 60-m FV at SPS is 2.6% Challenge is to obtain a K_L beam with $p_{peak} < 100 \text{ GeV}$

HEB fixed-target experiment?

 3×10^{18} pot/year at 3.3 TeV?

Need to go to large angle to get right K_L momentum spectrum

HEB collider experiment?

At $\sqrt{s} = 7$ TeV: $10^{13} K/\text{fb}^{-1}/(\Delta \eta = 3)$ LHCb $K_S \rightarrow \mu\mu$ analysis $\Delta\theta$ depends on d for collimation No value of θ for $p(K_I) \sim 100 \text{ GeV}$ and $\Delta\theta$ large enough for good yield

HEB collider experiment with K_s ?

 $K_S \rightarrow \pi^0 \nu \bar{\nu}$ not *CP* violating — measures base of kaon triangle Like $K_L \rightarrow \mu\mu$ but with fewer complications from LD effects $BR(K_S \to \pi^0 \nu \bar{\nu}) \sim 10^{-14}$: Experimentally impossible to isolate in a jet

Summary: Outlook in 2025

New physics at LHC

Explore flavor structure of "new" SM

No new physics at LHC

Explore extremely high mass scales with indirect probes

Either way, $K_L \rightarrow \pi^0 v \bar{v}$ will still be quite interesting!

In 2025, the experimental situation will have progressed:

- NA62 may have BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) to < 5%
- KOTO will have evidence for $K_L \to \pi^0 \nu \bar{\nu}$ events
- KOTO-2 will be starting up with 10 event/sly sensitivity

Will a 100-event $K_L \rightarrow \pi^0 v \bar{v}$ experiment at CERN be in the works?

- At an upgraded T10 facility using NA62 infrastructure?
- At a new high-intensity facility at PS or SPS?
- As part of an FCC injector upgrade?

More questions than answers, but a 100 event $K_L \rightarrow \pi^0 \nu \bar{\nu}$ experiment is surely a worthwhile endeavor!

Additional information

Fixed target runs at the SPS

General assumption:

SPS available for fixed-target during LHC runs

F. Bordry, CERN Roadmap, Feb 2014

(Extended) Year End Technical Stop: (E)YETS

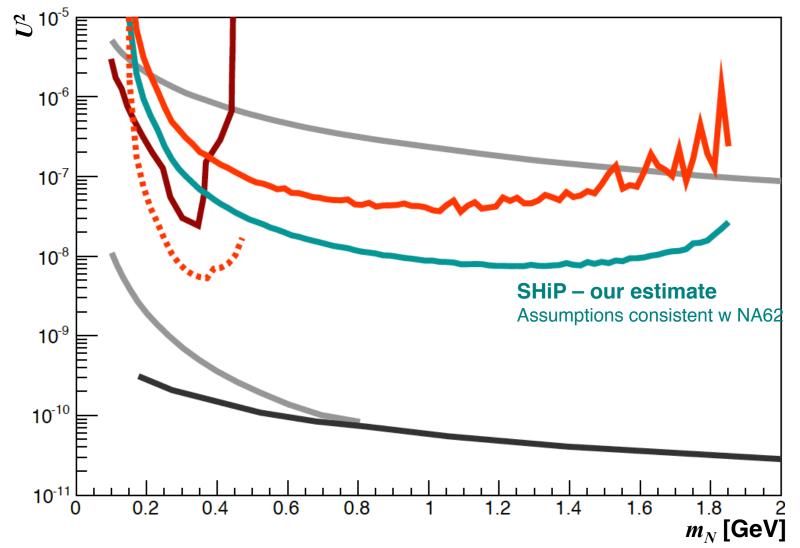
3'000 fb-1

Heavy neutrinos: Prospective NA62 results

2 years:

- Fortify PS191 limit, particulary for 350 $< m_N <$ 450 MeV
- Full compatibility with NA62 Run 2 program

5 years, nominal NA62 intensity:


- Largely reproduce and extend PS191 limits for N from K decays
- Begin to test vMSM as an explanation for BAU
- Compatible with Run 3 K decay program $(K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \pi^0 \ell \ell)$

5 years, SHiP-like intensity:

- Substantial improvement on PS191 and SHiP for $200 < m_N < 450$ MeV
- Significant test of vMSM as an explanation for BAU by end of Run 3
- Less sensitive than ultimate SHiP result by ~10×
- Possibly compatible with K_L physics program in Run 3 but needs study

Exclusive search for HNL with NA62 setup

Sensitivity for exclusive search for $N \to e\pi$ or $\mu\pi$ 5 years of data at SHiP intensity (2 × 10²⁰ pot = 20 sly at 2.4 × 10¹³ p/16.8 s)

