Lepton Flavour Violation at τ **decays**

Marcin Chrząszcz^{1,2}

 1 University of Zurich, 2 Institute of Nuclear Physics, Krakow

FCC WG on experiments with the CERN injectors

September 29, 2014

Outline

- 1 Lepton Flavour Violation status
- 2 LFV at B-factories
- 3 LHCb detector
- Selection
- **5** Multivariate technique
- **6** Normalisation
- Backgrounds
- **8** Model dependence
- Results
- Future of LFV at hadron colliders

Lepton Flavour/Number Violation

Lepton Flavour Violation(LFV):

After μ^- was discovered (1936) it was natural to think of it as an excited e⁻.

- Expected: $B(\mu \rightarrow e\gamma) \approx 10^{-4}$
- Unless another ν , in intermediate vector boson loop, cancels.

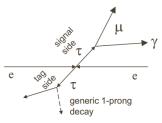
I.I.Rabi:

"Who ordered that?"

- Up to this day charged LFV is being searched for in various decay modes.
- LFV was already found in neutrino sector (oscillations).

Lepton Number Violation (LNV)

- Even with LFV, lepton number can be a conserved quantity.
- Many NP models predict it violation (Majorana neutrinos)
- Searched in so called Neutrinoless double β decays.

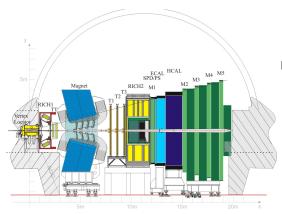


LFV at B-factories

$$\sigma(\mathrm{e^-e^+} \rightarrow \tau^+\tau^-) = 0.919~\mathrm{nb}$$

Clean environment.

- High efficiency: 5 10%
- Background free.
- Efficient and simple tag.


Signal extraction:

Signal extraction:
$$M_{\mu\gamma} = \sqrt{(E_{sig}^{CM})^2 - (p_{sig}^{CM})^2}$$

$$\Delta E = E_{sig}^{CM} - E_{beam}^{CM}$$

$$H_I = \sum_{ij} \frac{|\overrightarrow{p_j}||\overrightarrow{p_i}|P_I(\cos\Omega_{ij})}{s}$$

$$M_{\mu\gamma} \sim \tau \text{ mass}$$

$$0.1$$

$$M_{\mu\gamma} \sim \tau \text{ mass}$$

$$0.2$$

$$0.3$$
 signal MC distribution. Size of boxes shows density.
$$0.4$$

$$1.65 \quad 1.7 \quad 1.75 \quad 1.8 \quad 1.85$$

$$M_{\text{try}} (\text{GeV}/c^2)$$

Hadron collider - LHCb

LHCb is a forward spectrometer:

- Excellent vertex resolution.
- Efficient trigger.
- High acceptance for τ and B.
- Great Particle ID

Analysis approach

B factories

- Clean signal: $e^+e^- \rightarrow \tau^+\tau^-$
- Calculate the thrust axis
- **3** "Partial tag" of the other τ
- 4 Small cross section 0.919nb

LHCb, $(7 - 8 \, TeV, 2011-2012 \, data)$

- Inclusive τ cross section: $\sim 80 \mu b$.
- $\sim 10^{11} \tau$ produced.
- 3 Dominant contribution: $D_s \rightarrow \tau \nu_{\tau} (78\%)$
- No tag possible.

Strategy

- Blind analysis.
- Loose selection.
- Multivariate classification in: mass, $PID(\mathcal{M}_{PID})$, geometry (\mathcal{M}_{3bodv}) .
- Binning optimisation.
- Consider 2012(8 TeV) and 2011(7 TeV) data separately.
- Relative normalisation $(D_s \to \phi(\mu\mu)\pi)$.
- Invariant mass fit for expected background in each likelihood bin: fit in $|m m_{\tau}| > 30$ MeV.
- "middle sidebands" for classifier evaluation and tests: (20 MeV $< |m-m_{\tau}| <$ 30 MeV).
- CLs for limit calculation.

au production

• τ 's in LHCb come from five main sources:

Mode	7 TeV	8 TeV
Prompt $D_s \rightarrow \tau$	$71.1\pm3.0\%$	$72.4 \pm 2.7 \%$
Prompt $D^+ o au$	$4.1\pm0.8\%$	$4.2 \pm 0.7 \%$
Non-prompt $D_s \to au$	$9.0\pm2.0\%$	$8.5\pm1.7\%$
Non-prompt $D^+ \to \tau$	$0.18 \pm 0.04 \%$	$0.17\pm0.04\%$
$X_{b} o au$	$15.5\pm2.7\%$	$14.7 \pm 2.3 \%$

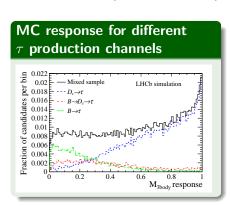
$\mathcal{B}(\mathsf{D}^+ o au)$

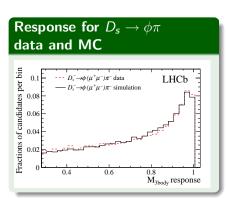
- There is no measurement of $\mathcal{B}(\mathsf{D}^+ \to \tau)$.
- One can calculate it from: $\mathcal{B}(\mathsf{D}^+ \to \mu \nu_{\mu}) + \mathsf{helicity}$ suppression + phase space.
- hep-ex:0604043.
- $\mathcal{B}(D^+ \to \tau \nu_{\tau}) = (1.0 \pm 0.1) \times 10^{-3}$.

Triggers at LHCb

- LHCb uses complex trigger¹
- $\mathcal{O}(100)$ trigger lines.
- Lines change with data taking.
- Optimized choice of triggers based on $\frac{s}{\sqrt{b}}$ FOM.
- Evaluated different triggers used in 2012 data taking.
- Found negligible differences in trigger efficiencies.

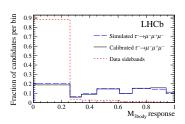
Geometric likelihood


- As mentioned in LHC we have different production sources of τ 's.
- Each source has different detector response signature.
- To maximise our performance we trained classifiers for each of the τ sources using:
 - Kinematic properties of τ candidate.
 - Geometric properties of τ candidate, like pointing angle, DOCA, Vertex χ^2 , flight distance.
 - Isolations, for vertex and individual tracks.
- After training the individual classifiers one that combines all this information in a single classifier on mixed sample of τ 's.
- This technique is known as Blending or Ensemble learning.
- Using this approach we gain 6% sensitivity!



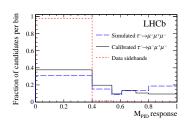
Performance of Blend classifier

• Classifier prefers τ 's from prompt D_s , the dominant channel.

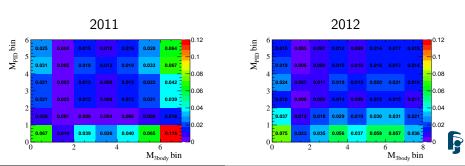


Calibration

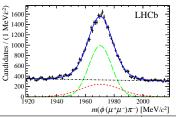
- Assume all differences between $\tau \to \mu \mu \mu$ and $D_s \to \phi \pi$ come from kinematics (mass, resonance, decay time), which is correct in MC.
- Get correction $D_s \leadsto \tau$ from MC.
- Apply corrections to $D_s \to \phi \pi$ on data.

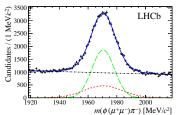

• $D_s \to \phi \pi$ well modelled in MC.

PID


- Classifier trained on inclusive MC sample.
- Using information from: RICH, Calorimeters, Muon system and tracking.
- Correct for the MC efficiency using control channel: $D_s \to \phi(\mu\mu)\pi$ and $B \to J/\psi(\mu\mu)K$

Binning optimisation


- Events are distributed among \mathcal{M}_{3body} , \mathcal{M}_{PID} plane.
- In 2D we group the events in groups(bins)
- Bins are optimised using CL_s method.
- The lowest bins are rejected, because they do not contribute to the limit sensitivity.
- In the remaining bins a fit to mass side-bands is performed in order to estimate number of expected background in signal window.

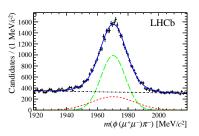


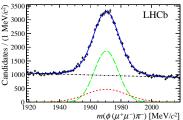
Mass shape

- Double-Gaussian with fixed fraction (70 % inner Gaussian).
- Fix fraction to ease calibration.
- Correct mass by MC:

$$\sigma_{ extit{data}}^{ au} = rac{\sigma_{ extit{MC}}^{ au}}{\sigma_{ extit{MC}}^{ extit{D}_{ extst{s}}}} imes \sigma_{ extit{data}}^{ extit{D}_{ extst{s}}}$$

Calibrated $ au$ Mass shape	7 TeV	8 TeV
Mean (MeV)	1779.1 ± 0.1	1779.0 ± 0.1
σ_1 (MeV)	7.7 ± 0.1	7.6 ± 0.1
σ_2 (MeV)	12.0 ± 0.8	11.5 ± 0.5

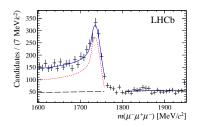


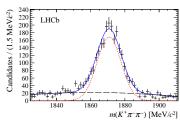


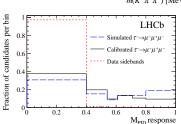
Relative normalisation

$$\mathcal{B}(\tau \to \mu \mu \mu) = \frac{\mathcal{B}(\mathsf{D_s} \to \phi \pi)}{\mathcal{B}(\mathsf{D_s} \to \tau \nu_{\tau})} \times f_{\mathsf{D_s}}^{\tau} \times \frac{\varepsilon_{\mathsf{norm}}}{\varepsilon_{\mathsf{sig}}} \times \frac{\mathcal{N}_{\mathsf{sig}}}{\mathcal{N}_{\mathsf{norm}}} = \alpha \times \mathcal{N}_{\mathsf{sig}}$$

- where ε stands for trigger, reconstruction, selection efficiency.
- $f_{D_s}^{\tau}$ is the fraction of τ coming from D_s .
- norm = normalisation channel $D_s \rightarrow \phi \pi$ i.e. $(83 \pm 3) \%$ for 2012.

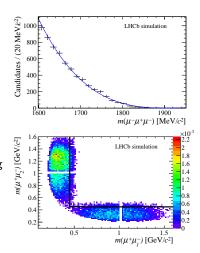






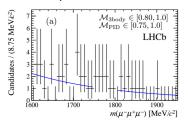
Misidentification

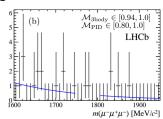
- Dominant: $D^+ \to K\pi\pi$.
- Also seen $D^+ \to \pi\pi\pi$ and $D_s \to \pi\pi\pi$.
- All contained in the lowest \mathcal{M}_{PID} bin.



Dangerous backgrounds

- $\phi \rightarrow \mu \mu + X$: narrow veto on dimuon mass.
- $D_s \to \eta(\mu\mu\gamma)\mu\nu_\mu$: not so easy:
 - Model it
 - Remove it with dimuon mass cut:
 - Fits better understood.
 - Sensitivity unchanged when removing veto.
 - Smaller uncertainty on expected background.

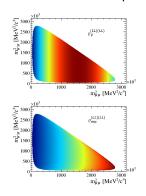


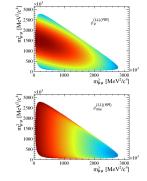

Remaining backgrounds

- Fit exponential to invariant mass spectrum in each likelihood bin.
- Don't use blinded region (±30 MeV).
- \rightarrow Compatible results blinding only $\pm 20~\text{MeV}^2$

Example of most sensitive regions in 2011 and 2012

Candidates / (8.75 MeV/c²

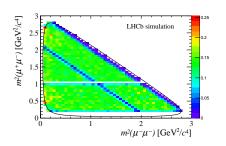




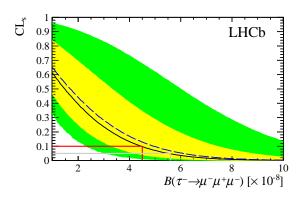

²partially used in classifier development

Model dependence

- η veto \Rightarrow our limit not constraining to New Physics with small $m_{\mu^+\mu^-}$.
- Model description in arXiv:0707.0988 by S.Turczyk.
- 5 relevant Dalitz distributions: 2 four-point operators, 1 radiative operator, 2 interference terms.



Model dependence

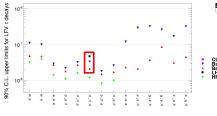

- η veto \Rightarrow our limit not constraining to New Physics with small $m_{\mu^+\mu^-}$.
- Model description in arXiv:0707.0988 by S.Turczyk.
- 5 relevant Dalitz distributions: 2 four-point operators, 1 radiative operator, 2 interference terms.
- With radiative distribution limit gets worse by a factor of 1.5 (dominantly from the η veto).
- The other four Dalitz distributions behave nicely (within 7%).

Results

Limits(PHSP): Observed(Expected) 4.6 $(5.0) \times 10^{-8}$ at 90% CL 5.6 $(6.1) \times 10^{-8}$ at 95% CL

Dalitz distribution	x 10 ⁻⁸
$\varrho_V^{(LL)(LL)}$	4.2 (4.7)
$\varrho_{V_{-}}^{(LL)(RR)}$	4.1 (4.6)
$\varrho_{rad}^{(LR)}$	6.8 (7.6)
$\varrho_{mix}^{(LL)(LL)}$	4.4 (5.1)
$\varrho_{mix}^{(LL)(RR)}$	4.6 (5.0)

"The Rule of Three"


$au ightarrow \mu \mu \mu$ limits (90 % CL)

BaBar(FC) 3.3×10^{-8}

Belle(FC) 2.1×10^{-8}

LHCb(CLs) 4.6×10^{-8}

HFAG(CLs) 1.2×10^{-8}

CLEO
BaBar
Belle
LHCb
HFAG CLs

From A.Lusiani talk

To conclude:

- LHCb updated $au o \mu\mu\mu$ with full data set.
- We are getting close to B-factories.
- Thanks to 3 experiments we have a world limit: $\mathcal{B}(\tau \to \mu\mu\mu) < 1.2 \times 10^{-8}$ at 90% CL.

Future of $\tau \rightarrow 3\mu$ at hadron colliders.

More nasty background

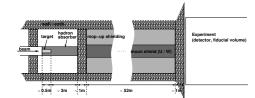
D_s^+ decay	$\mathcal{B}_1^{(*)}$	Secondary decays	\mathcal{B}_2	$\mathcal{B}_{ ext{tot}} = \mathcal{B}_1 imes \mathcal{B}_2$
$\eta \mu^+ u_\mu$	2.67×10^{-2}	$\begin{array}{l} \eta \rightarrow \mu^{+}\mu^{-} \\ \eta \rightarrow \mu^{+}\mu^{-}\gamma \\ \eta \rightarrow \pi^{0}\mu^{+}\mu^{-}\gamma \end{array}$	5.8×10^{-6} 3.1×10^{-4} $< 3 \times 10^{-6}$	$1.5 \times 10^{-7} \\ 8.2 \times 10^{-6} \\ < 8.0 \times 10^{-8}$
$\eta'\mu^+ u_\mu$	9.9×10^{-3}	$\eta' \to \mu^+ \mu^- \gamma$	1.09×10^{-4}	1.1×10^{-6}
$\phi \mu^+ u_\mu$	2.49×10^{-2}	$\phi \to \mu^+ \mu^-$ $\phi \to \mu^+ \mu^- \gamma$ $\phi \to \mu^+ \mu^- \pi^0$	2.87×10^{-4} 1.4×10^{-5} $1.12 \times 10^{-5}(\dagger)$	7.1×10^{-6} 3.5×10^{-7} 2.8×10^{-7}

^{(*):} given branching ratios are from corresponding $e\nu_e$ decays

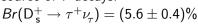
^{(†):} given branching ratio is from $\phi \to e^+e^-\pi^0$ decays

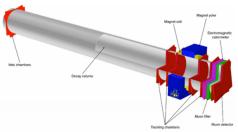
More nasty background

D^+ decay	$\mathcal{B}_1^{(*)}$	Secondary decays	\mathcal{B}_2	$\mathcal{B}_{ ext{tot}} = \mathcal{B}_1 imes \mathcal{B}_2$
$\eta \mu^+ u_\mu$	1.14×10^{-3}	$\eta \to \mu^+ \mu^-$ $\eta \to \mu^+ \mu^- \gamma$ $\eta \to \pi^0 \mu^+ \mu^- \gamma$	5.8×10^{-6} 3.1×10^{-4} $< 3 \times 10^{-6}$	6.6×10^{-9} 3.5×10^{-7} $< 3.4 \times 10^{-9}$
$\eta' \mu^+ \nu_{\mu}$	2.2×10^{-4}	$\eta' \to \mu^+ \mu^- \gamma$	1.09×10^{-4}	2.4×10^{-8}
$\omega \mu^+ u_{\mu}$	1.6×10^{-3}	$\omega \to \mu^+ \mu^- \omega \to \mu^+ \mu^- \pi^0$	9.0×10^{-5} 1.3×10^{-4}	$1.4 \times 10^{-7} \\ 2.1 \times 10^{-7}$
$\rho^0 \mu^+ \nu_\mu$	2.4×10^{-3}	$ ho^0 o \mu^+ \mu^-$	4.55×10^{-5}	1.1×10^{-7}
$\phi \mu^+ \nu_{\mu}$	$<9\times10^{-5}$	$\phi \to \mu^+ \mu^-$	2.87×10^{-4}	2.6×10^{-8}

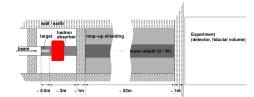

(*): given branching ratios are from corresponding $e\nu_e$ decays

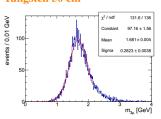
(†): given branching ratio is from $\phi \to e^+e^-\pi^0$ decays



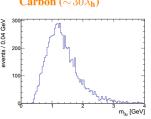

LFV at SHIP experiment

- Beam dump experiment from SPS.
- Designed to study long living particles e.g.. HNL.
- Main interest are particles coming from charm decays.
- Charm decays are also an excellent source of τ decays:

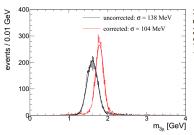


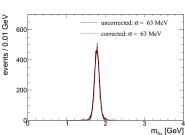

LFV at SHIP experiment: Idea 1

- Put a specific $au o 3\mu$ detector just after the target.
- Huge number of au produced: $1.2 \times 10^{15}!$
- The numbers are very encouraging!
- What is the mass resolution?


Based on SHIP $\tau \to 3\mu$ WG: L.Shchutska, G.Mitselmakher, J.Harrison, C.Parkes, N.Serra, E. Rodrigues, B.Storaci, A.Golutvin ,M.Chrząszcz

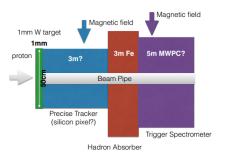
Tungsten 50 cm

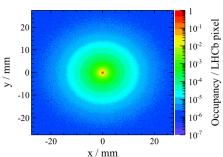




Momentum correction

Carbon ($\sim 5\lambda_h$)


Tungsten 1cm



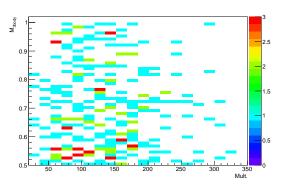
- With correction of momentum after the target the resolution is better.
- However still not good enough to perform this measurement.
- Conclusions: momentum of the muons needs to be measured before absorber and on thin target.

LFV at SHIP experiment: Idea 2

- Multiple scattering is negligible.
- \bullet τ vertex outside the target.
- Reduce τ flux by a factor of 100.
- First estimate of sensor radius : $\sim 2.5 \text{ mm}$
- Evaluated acceptance: 33%
- Work ongoing.

LFV at injectors for FCC

- First thought: Detector similar to LHCb.
- Lets try to make "zero approximation" using LHCb analysis.
- Ingredients:
 - Acceptance: ~ 10 %.
 - Pre-Selection and tracking: ~ 10 %.
 - Trigger: \sim 40 %.
 - Selection(trash bins): \sim 50 %.
 - In total: 0.2 %.
- Not bad so far!

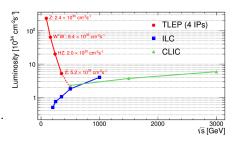

Observation:

The total efficiency can be increased by factor 2-5 if detector is optimised for τ 's.

LFV at injectors for FCC - Pileup

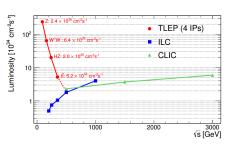
- Not clear correlation with multiplicity.
- Good for pile-up increase.

Observation:


Pile up in LHCb regime is not a problem.

LFV at injectors for FCC - Idea to shoot at

- Let's assume that FCC will be a e⁻e⁺ collider.
 I HC tunnel - e⁻e⁺ booster.
- We would collect 10¹²⁻¹³ Z decays.
- $Br(Z \to \tau^- \tau^+) = 3.370 \pm 0.008\%$.
- Number of τ : 6.7 × 10^{10–11}.

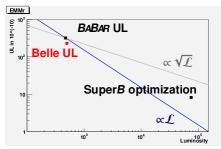


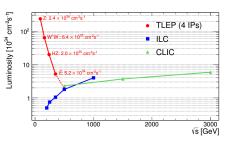
LFV at injectors for FCC - Idea to shoot at

- Let's assume that FCC will be a e⁻e⁺ collider.
 I HC tunnel - e⁻e⁺ booster.
- We would collect 10¹²⁻¹³ Z decays.
- $Br(Z \to \tau^- \tau^+) = 3.370 \pm 0.008\%$.
- Number of τ : 6.7 × 10^{10–11}.
- Belle2: $50ab^{-1} \times 2 \times 0.919nb = 9.2 \times 10^{10} \ \tau$'s

Reminder:

- $\epsilon_{\tau \to 3\mu}^{BaBar} = 6.6 \pm 0.6\%$
- $\epsilon_{\tau \to 3\mu}^{Belle} = 7.6 \pm 0.6\%$
- $\epsilon_{\tau}^{ALEPH} = \sim 50\%$


• There is a factor of 8 to gain just in efficiency!

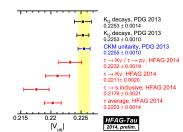


LFV at injectors for FCC - Idea to shoot at

- Let's assume that FCC will be a e⁻e⁺ collider.
 LHC tunnel - e⁻e⁺ booster.
- We would collect 10¹²⁻¹³ Z decays.
- $Br(Z \to \tau^- \tau^+) = 3.370 \pm 0.008\%$.
- Number of τ : 6.7 × 10¹⁰⁻¹¹.

Reminder 2:

- In e⁻e⁺ machines in contrast to hadron colliders the limit doesn't necessary follow $\sqrt{\mathcal{L}}$.
- Another factor to gain.



Beyond LFV

 τ 's at hadron collider have limit use! At e⁻e⁺ we get for free:

- All LFV(at hadron colliders most decays are not possible).
- $V_{\mu s}$ from τ .
- Lepton universality tests (anomally from LEP): $\frac{2BR(W \to \tau \nu_{\tau})}{BR(W \to \mu \nu_{\mu}) + BR(W \to e \nu_{\epsilon})} = 1.077(0.026).$
- Hadronic spectral functions.
- etc.

Conclusions

- LFV is possible at hadron machines!
- LHCb already caught up with B-factories.
- In future there are many different possibilities for au factories.
- Many studies ongoing.

