Physics opportunities using CERN injectors: <u>Theoretical considerations</u>

> Gino Isidori [University of Zürich]

Introduction

LFV in charged leptons

Precision measurements of FCNCs

Exotic light states

Conclusions

<u>Introduction</u>

. . .

Despite all its successes, the SM suffers of a series of theoretical & cosmological problems:

- Fine-tuning/UV sensitivity of the Higgs-mass term ["*hierarchy problem*"]
- Unexplained hierarchical structure of the Yukawa couplings ["*flavor puzzle*"]
- No explanation for the quantization of the U(1) charges [*hint of unification*?]
- No natural inclusion of neutrino masses [*hint of unification*?]
- Non coherent inclusion of gravity at the quantum level
- No good candidates to explain dark matter, inflaton, and dark-energy

The SM is likely to be an *effective theory*, i.e. the limit of a more fundamental theory, with new degrees of freedom

The SM is likely to be an *effective theory*

We need to search for New Physics

[with a broad spectrum perspective given the lack of NP signal so far...]

i.e. we need to search for new degrees of freedom beyond the range of *<u>energies</u>* and *<u>effective couplings</u>* explored so far

<u>High-precision low-energy physics</u> [= search for forbidden/rare phenomena occurring at low-energies]

• <u>Indirect sensitivity</u> to physics ay <u>high-energy scales</u>, not directly accessible at colliders

• <u>Direct sensitivity</u> to <u>weakly-coupled</u> <u>exotic light-states</u>, not seen so far because of limited statistics

A long series of high-precision measurements (& searches) of flavor-changing processes at low energies has already been performed, both in the quark and in the lepton sector \rightarrow So far everything seems to fit well with the SM...

 \rightarrow Strong limits on several NP modes

A closer look to a specific observable:

At first sight the bound on the scale is quite impressive...

A closer look to a specific observable:

At first sight the bound on the scale is quite impressive... ...but we should not get too depressed!

A closer look to a specific observable:

At first sight the bound on the scale is quite impressive... ...but we should not get too depressed! ...and should not forget that a wide region of exotic models is still open!

Weakly-coupled exotic light-states

III. Search for short-lived new states (typically produced in B, D, K decays & decaying into l^+l^- pairs) \rightarrow high-precision l^+l^- spectra

IV. <u>Search for long-lived new states</u> → (largely) displaced vertices ["beam-dump" set-up]

LFV in charged leptons

After what we learned from neutrino physics, LFV in charged leptons is probably the most interesting (*and potentially rewarding*) search in the flavor sector.

- Neutrino oscillations => Lepton Flavor Violation
- No problems of SM (and SM + v) backgrounds
- LFV in charged leptons at <u>"visible rates"</u> if there are new particles carrying lepton flavor not too far from the TeV scale (*as in most realistic NP models*)

LFV in charged leptons

LFV in charged leptons at <u>"visible rates</u>" if there are new particles carrying lepton flavor not too far from the TeV scale:

E.g.: SUSY

$$\mu \tilde{\chi} e \tilde{v}_{e} \tilde{v}_{e} \int (\delta_{LL})_{12} \sim \begin{bmatrix} y_{t}^{2} V_{13} V_{23}^{*} [GUT] \\ y_{v_{3}}^{2} U_{13} U_{23}^{*} [see-saw] \end{bmatrix}$$

$$B(\mu \rightarrow e\gamma) \sim 10^{-13} \left[\frac{\tan\beta}{10} \right]^{2} \left[\frac{0.5 \text{ TeV}}{\tilde{m}} \right]^{4} \left[\frac{(\delta_{LL})_{12}}{10^{-4}} \right]^{2}$$

...and similar expressions holds in many other models:

=> MEG has realistic chances to see $\mu \rightarrow e\gamma$ (*but remember that* $\Gamma \sim \Lambda^{-4}$)

Precision measurements of FCNC decays [*the usual suspects*...]

Under very general assumptions (gauge symmetry + absence of new light states) flavor and e.w. observables used for indirect NP searches can be decomposed as follows:

<u>This decomposition is very general</u>: it holds <u>both</u> for forbidden processes (e.g.: $\tau \rightarrow \mu\gamma$) and precision measurements (e.g.: $B_s \rightarrow \mu\mu$)

The key problem of precision measurements is to find observables where the TH error on does not "obscure" the sensitivity to NP \rightarrow <u>few cases in a long-term</u> <u>perspective</u>, <u>but each of them is worth a dedicated experiment</u>.

Most notable examples: $K_L \rightarrow \pi^0 v v [\rightarrow talk by Moulson] \& \Gamma(B_d \rightarrow \mu \mu) / \Gamma(B_s \rightarrow \mu \mu)$

Example of B-physics observable that will **NOT** be dominated by the TH error for a while (*up to 2030...!*)

Example of B-physics observable that will **NOT** be dominated by the TH error for a while (*up to 2030...!*)

Example of B-physics observable that will **NOT** be dominated by the TH error for a while (*up to 2030...!*)

$$\frac{BR(B_d \to \mu\mu)}{BR(B_s \to \mu\mu)} \qquad A = A_0 \qquad c_{SM} \frac{1}{M_W^2} + c_{NP} \frac{1}{\Lambda^2}$$

Reaching the 2% level in such ratio will increase the NP sensitivity by a factor of 3 on the scale $[\Lambda \rightarrow 3\Lambda]$ & by factor of 10 on the coupling $[\sigma(c_{NP}) \rightarrow 0.1\sigma(c_{NP})]$

Very similar considerations on the NP reach holds for the theoretically clean $K_L \rightarrow \pi^0 v \& K^+ \rightarrow \pi^+ v v$ decays that, however, are sensitive to a different class of NP models (\leftrightarrow full complementarity)

Exotic light states [the "hidden-sector" & "dark-photon" paradigm]

Dark-matter, g-2 anomaly, ... provide a good phenomenological motivation to search for new light (*up to few GeV*) neutral states weakly coupled to e, μ , or τ .

The "*dark photon*" paradigm is only a simple (and quite general) example, but many more options are possible.

Arkani-Hamed, Finkbeiner, Slatyer Weiner, '09

Exotic light states [the "hidden-sector" & "dark-photon" paradigm]

Exotic light states [the "hidden-sector" & "dark-photon" paradigm]

The "*dark photon*" paradigm is only a simple (and quite general) example, but many more options are viable.

High-precision measurements of l^+l^- spectra ($l=e, \mu$) in B, D, K decays provide a very useful probe of such scenarios

What I will explore in the next few slides is a simple toy-model for "short-lived" searches, based on

- one single new light neutral scalar coupled (*at least*) to muons,
- built to "solve" the $(g-2)_{\mu}$ anomaly.

Solving the $(g-2)_{\mu}$ anomaly in terms of NP, requires the introduction of some new (*light or heavy*...) states <u>coupled to muons</u>:

Solving the $(g-2)_{\mu}$ anomaly in terms of NP, requires the introduction of some new (*light or heavy*...) states <u>coupled to muons</u>:

- One light $SU(2)_L$ -singlet scalar field, ϕ
- One effective coupling $c_{\mu}/\Lambda \rightarrow$ Two parameter model $(c_{\mu}/\Lambda \text{ and } m_{\phi})$:

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{kin}}(\phi) + \left(\frac{c_{\mu}}{\Lambda} \,\overline{\mu}_{\text{L}} \,\mu_{\text{R}} \,\text{H} \,\phi + \text{h.c.}\right)$$

This \mathscr{L}_{eff} can be generated, for instance, introducing an heavy vector-like partner of the muon

• The ratio of the two free parameters is the fixed by $(g-2)_{\mu}$ anomaly:

$$\Delta a_{\mu} = \frac{|\mathbf{c}_{\mu}|^2}{96\pi^2} \frac{v^2}{\Lambda^2} \frac{m_{\mu}^2}{m_{\phi}^2} \approx 6.4 \times 10^{-9} \left| \frac{\mathbf{c}_{\mu}/\Lambda}{(10 \text{ TeV})^{-1}} \right|^2 \left| \frac{1 \text{ GeV}}{m_{\phi}} \right|^2$$

For 0.3 GeV $\leq m_{\phi} \leq 1.5$ GeV, a promising possibility to test/constrain this model is

BR
$$(D_s \rightarrow \phi \mu \nu) = \sim 10^{-7} \leftrightarrow \sim 10^{-6}$$

[0.5 GeV] [1.0 GeV]

For 0.3 GeV $\leq m_{\phi} \leq 1.5$ GeV, a promising possibility to test/constrain this model is

BR $(D_s \rightarrow \phi \mu \nu) = \sim 10^{-7} \leftrightarrow \sim 10^{-6}$ [0.5 GeV] [1.0 GeV]

BR
$$(D_s \rightarrow (\mu\mu)_{\phi}\mu\nu) = BR (D_s \rightarrow \phi\mu\nu) \times BR (\phi \rightarrow \mu\mu)$$

The φ is certainly <u>short-lived</u> [↔ (g-2)_μ constraint]
BR (φ → μμ) can be << 1 if there are additional (invisible) decay modes (v's, DM states, etc...). Actually BR <<1 is welcome to avoid existing constraints

The $D_s \rightarrow (\mu\mu)_{\phi}\mu\nu$ decay could could be searched for at LHCb, but in principle a new dedicated experiment could cover a much wider range.

Exotic light states

What I just illustrated is only one example of the class of models that could be tested in an experiment reconstructing the muons produced from weak charm decays

Possible variations:

- X could be a scalar or a vector
- X could couple also/only to tau's
- X could couple to the weak current
-

- Despite we have not seen any clear NP signal yet, we still have strong arguments to believe that <u>the SM is not a complete theory</u>
- Low-energy high-precision physics offer a unique discovery potential
- Four main directions:

 I. SM forbidden modes
 II. Precise measurements of rare FCNCs

 III. Search for short-lived new states
 IV. Search for long-lived new states

- Despite we have not seen any clear NP signal yet, we still have strong arguments to believe that <u>the SM is not a complete theory</u>
- Low-energy high-precision physics offer a unique discovery potential

