Analysis of test-beam data from the W-AHCAL prototype

Angela Burger (CERN, LMU)

17.09.2014





### Test-beam measurement

Test-beam measurement performed on the Calice W-AHCAL:

- Sampling calorimeter (38 layers)
- absorber material: tungsten
- active layers: scintillator tiles coupled to SiPM readout

Experimental set-up:





• Beam energies: 1-300 GeV (of interest for this studies: 25-150 GeV)

• Particles: electrons, muons, pions and protons

Angela Burger (CERN,LMU)

### Goal of the analysis

• Comparison of Data/Monte-Carlo with emphasis on variables describing hadronic shower fluctuations

Comparison measurement data to two models (GEANT 4, version 9.6.p01)

- QGSP\_BERT\_HP (quark-gluon string precompound + Bertini Cascade models + neutron high precision)
- FTFP\_BERT\_HP (Fritiof precompound + Bertini Cascade models + neutron high precision)
- Investigate separation potential of protons and pions in the W-AHCAL



Introduction

# Study of fluctuations of hadronic showers Comparison of data and Monte-Carlo



# Fluctuation of hadronic showers: Motivation

Investigate fluctiations in radial and longitudinal shower development

- Not yet discussed in detail in CAN-044
- Shape of hadronic showers vary very much (Example: Pions, beam energy = 80 GeV):



#### Do the simulations describe hadronic shower fluctuations correctly?



# Fluctuations of longitudinal shower development

Fluctuation of energy loss in the calorimeter layers: Quantified using spread of the energy deposition in mean layer of shower maximum: Pions:



- MC underestimate spread by up to 10% ۲
- QGSP\_BERT\_HP in this case better option ۲
- Larger deviation data/MC @50-60 GeV ⇒ position of maximum changes, but at a different beam energy for data and MC
- Results similar for protons



# Longitudinal shower depth @ 67%: Mean

Calculate mean number of layer it takes to absorb 67% of full shower energy.

Example for the distribution of shower depth @ 67%: pions, beam energy: 80 GeV:



- Goodness of description model and particle dependent
- Agreement within 10%
- Proton showers are deeper than pion showers

Angela Burger (CERN,LMU)



### Longitudinal shower depth @ 67%: Spread





Protons:

- Agreement data and MC within 5%
- QGSP\_BERT\_HP better option for protons and pions

## Fluctuations of the radial shower development

Fluctuations of energy deposition in rings around the center of gravity  $\Rightarrow$  quantified by spread of energy deposition in innermost ring **Pions:** 



# Radial shower depth @67%: Mean

Radius of the cylinder containing 67% of the full shower energy Example of the distribution of the radial shower depth @ 67% (Proton, beam energy = 80 GeV):





- QGSP\_BERT\_HP: agreement in the order of 10-15%
- Both MC underestimate radial shower depth
- Pion shower deposit more energy close to center axis





Fluctuation of hadronic showers

## Radial shower depth @67%: Spread



Protons:

• Agreement data/MC of the order of 10%

Pions:

# Proton and pion distinction using a Boosted Decision Tree



Angela Burger (CERN,LMU)

Analysis of test-beam data from the W-AHCAL prototype

17.09.2014 12 / 23

- **Goal:** Testing possibility to distinguish between protons and pions in the W-AHCAL prototype using shower properties
- Tool: Boosted decision tree (BDT)
  ⇒ Machine learning tool to classify events in a sample
- BDT is implemented in TMVA (Toolkit for Multivariate Analysis), for more information see TMVA manual



## Method continued

Trees: Consist of subsequent yes/no ("is proton?") decisions based on cuts on variables



"Growing" the tree:

- BDT finds typical properties for protons/ $\pi^+$  based on training sample with known properties (cut on variable)
- Training sample split at each node into two sub-samples: pion- or proton-like
- Procedure repeated until sample has highest purity or minimum size
- "Leaf node" defined as proton node if contains more proton events from the training sample
- Incorrecly classified events are given larger weight  $\Rightarrow$  reweighting  $\Rightarrow$  new BDTs are "grown" ("boosting")
- Apply BDTs on testing sample  $\Rightarrow$  classification according to how often event ended up in signal and background nodes
- Each event assigned a BDT value dependent whether if event more pion-/proton-like  $\Rightarrow$  BDT proposes optimal cut for highest purity



Angela Burger (CERN,LMU)

### Approach

- Proton and pion showers are very similar  $\Rightarrow$  separation very challenging
- Distinction based on 30 variables, describing shower properties and shower shape
- The larger the difference proton/pion, the more important the variable in the BDT
- Important variables are used at many decision nodes, contribute therefore much to the separation
- Unimportant and strongly correlated variables are ignored by the BDT
- Sample beam energy = 60 GeV (highest purity for protons and pions was archived in measurement for 60 GeV, response of Cherenkov-Detector energy dependent) LCD-Note-2013-006

Combinations of training and testing samples used in these studies

| training sample | testing sample |
|-----------------|----------------|
| QGSP_BERT_HP    | QGSP_BERT_HP   |
| FTFP_BERT_HP    | FTFP_BERT_HP   |
| data            | data           |
| QGSP_BERT_HP    | data           |



# BDT input: Longitudinal shower depth @67%



- Shower properties are very similar for protons and pions
- Difference between protons and pions is slightly larger in MC than in data

Note: Beam energy = 60 GeV

# BDT input: Mean hit energy/cell



By far important variable in separation (very large weight in all cases)
 ⇒ Large impact on result

• Difference between protons and pions is slightly larger in MC than in data

Remark: Mean value of quantity X:  $\bar{X} = \frac{\sum_{i=0}^{N} x_i}{N}$ 

### BDT input: Energy weighted radial distance



- Discrepancies between data and MC
- Important variable in most cases

Remark: Energy weighted radial distance:

$$d = \frac{\sum_{i=0}^{N_{\text{hits}}} E_i \sqrt{(x_i - x_{cog})^2 + (y_i - y_{cog})^2}}{\sum_{i=0}^{N_{\text{hits}}} E_i}$$





# BDT-Response and Efficiency Cut: QGSP\_BERT\_HP training and testing



• BDT values for protons and pions similar

- But still: clear difference between proton efficiency (95%) and pion efficiency (80%) @ optimal cut value
  - $\Rightarrow$  possible to accumulate protons in sample
- Results similar for FTFP\_BERT\_HP training and testing

Proton and Pion distinction

# BDT-Response and Efficiency Cut: Data training and testing



- In data, the difference in BDT-response is lower than in the case of MC
- The potential to separate Protons and Pions is overestimated in both MC
- But still: clear difference between proton efficiency (97%) and pion efficiency (87%) @ optimal cut value still visible
  - $\Rightarrow$  possible to accumulate protons in sample

# BDT-Response and Efficiency Cut: QGSP\_BERT\_HP training, Data testing



- BDT response plot shows discrepancy between data and MC
- $\bullet\,$  Caution: MC training information in disagreement with data  $\Rightarrow\,$  possible bias in data selection
- Proton efficiency: 97%, pion efficiency: 87%



### Conclusions

- Investigated longitudinal and radial fluctuations of hadronic showers
- For new variables, data and MC agree on percent level
- Agreement MC/data model and particle dependent
- Analyzed whether it is possible to separate protons and pions only using information provided by the HCAL
- Protons and pions very similar
  - $\Rightarrow$  for reliable distinction use information of other parts of the detector
  - $\Rightarrow$  Nevertheless, it is possible to accumulate protons/pions in sample
- MC shows larger difference between  $p/\pi^+ \Rightarrow p/\pi^+$  separation harder in reality than predicted in MC



## Thank you for your attention!







Bonus-material





Bonus-material

























# BDT-Response and Efficiency Cut: FTFP\_BERT\_HP training and testing



• proton efficiency = 95%, pion efficiency = 75% @ optimal cut value



Bonus-material

# BDT-Response and Efficiency Cut: QGSP\_BERT\_HP training and testing, $E_{available}$



- Consider  $E_{available}$ : Proton does not decay in contrast to  $\pi^+ \Rightarrow$  rest mass does not contribute in shower energy
- $E_{available} = 60 GeV$  for protons and pions
- proton efficiency: 97%, pion efficiency: 87%
- sample purity is lower compared with other MC samples ⇒ E<sub>available</sub> seems to have some impact!

# Longitudinal and radial shower fluctuations for protons

Longitudinal fluctuations Spread @ maximum energy deposition: Radial fluctuations Spread @ center:





### Radial shower fluctuations for higher radius

Spread of energy deposition in ring with r =20-30mm from center of gravity Pions: Protons:



### Layer of shower start





Angela Burger (CERN,LMU)