LAr Calorimeter Monitoring

Which one is correct?

...and why?

Monitoring & Data Quality

- The mechanisms by which ensure data adheres to
 - Our model of the detector
 - Inevitably there will be modifications to this model as the real ATLAS detector brings in data
 - But good Mon/DQ facilitates to minimize the time this takes
 - And the data must adhere to this 'corrected' model!
 - A stable behavior
 - Erratic episodes are marked as 'bad', at least initially
 - 'Stable' depends on when you ask the question
 - Later understanding will produce refinements which will improve the data quality, and the % of data that has good quality
- Formal quantification of data quality avoids biases which invalidate physical conclusions from analysis

Considerations from Physics Analysis

- QCD: looking for evidence of quark compositeness
 - Rutherford scattering ... excess of very high Pt jets
 - Pitfalls: high E calibration, hot cells in a locale
- SUSY: looking for evidence of LSP production
 - Very high Etmiss values
 - Pitfalls: Hot cells, coherent noise
- Exotics: looking for RS gravitons
 - Very high mass diphotons
 - Pitfalls: noise impact on γ isolation, false positives
- Higgs: diphoton decay, 4 electron decay (ZZ*)
 - Narrow EM resonances on a continuum
 - Pitfalls: Noise, unstable electronics
- Top
 - Jet calibration, Etmiss resolution
 - Pitfalls: All of the above

Step 1: LAr Monitoring

- Two distinct emphases:
 - Calibration run monitoring (pedestal, ramp, delay)
 - Physics run monitoring (cosmics, collisions)
- Within these, LAr examines two types of information
 - Diagnostic
 - Data events or event fragments
- Physics run monitoring is done with online and offline manifestations
 - Online for quick looks, fast response, debugging
 - Offline for detail and completeness, final DQ assessment
- Calibration run monitoring purely offline
- Athena Packages
 - LArCalorimeter/LArMonTools: data integrity, digits, RawChannels
 - Calorimeter/CaloMonitoring: CaloCells and CaloClusters

to Tier0

Online Monitoring

- Monitoring in trigger/DAQ system
 - Full event assembled in EF level
- 3 sources of data for LAr
 - DCS
 - DSPs
 - · data integrity
 - Basic digits histograms
 - Online detector monitoring farm
 - AthenaPT mechanism
 - offline algorithms run in online system
- vectors, histograms transmitted to
 - I(formation)S(erver) & O(nline)H(isto) servers
 - Accessed by
 - Gatherer (parallel monitoring)
 - OHP(resenter) display
 - DQMF: data quality assessment

Offline Monitoring

- Performed in Tier0/1
 - Online services replaced by offline ones and .root files
- Tier0
 - 'AthenaPT' in offline mode
 - full reconstruction better than available online
 - Express stream
 - High Pt triggers (e.g. Z→II)
 - 1-2 hrs
 - Initial calibration
 - 'signal' monitoring
 - Bulk streams
 - Jet/Etmiss, μ, e/γ, min-bias, B
 - ~1day
 - Updated calibration
 - Noise monitoring, more detailed signal monitoring

LAr rootMacros Framework

- Use ROOT as standalone browser platform
- Top level menus
 - Navigate histogram folder hierarchy
 - Histograms from different tools
 - Permit display in different contexts (rate, crate...)
 - Allow overlay of references
- Incorporates tabs, dialog boxes
- For each Athena tool
 - Corresponding macro
 - Both LArMonTools & CaloMonitoring

DCS Monitoring

- Electronics diagnostics
 - ROD crate V, I, T
 - LVPS V and T
- LAr properties
 - Temperature impacts scale
 - Density, e velocity
 - 2% per degree K
 - Purity
 - less effect (fast shaping)
- Information about state (e.g. ready) & status (e.g. OK, FATAL)
 - To LAr DCS DQ calculator in Oracle archive

Data Integrity: LArFEBMon

- Athena algorithm
 - used in calibration runs and online in physics runs
 - Parity, BCID, SCA status, gain mismatch btwn samples...
 - Any errors identified reflect serious problems in DAQ chain

Calibration Runs

- Readout electronics has many complexities
 - Analog preamps, shaping, SCA buffers,
 - Digital electronics: ADCs
 - Need to
 - know they work (monitor)
 - quantify their performance (calibrate)

Procedure:

- inject a known pulse at beginning of electronics chain
 - At electrodes except for FCal
- See how electronics behaves
 - · Dead channels most direct to spot
- Properties of pulse to control:
 - Scan pulse height (vary in 'ramp')
 - Scan pulse timing (vary in 'delay')

- Must attain 0.1% linearity over gain range
- •Timing to 1 ns with respect to physics pulse
- •Shape, especially at rise, should reflect physics shape

- Pedestal is arbitrary signal which puts whole noise distribution in the positive
 - Each channel a bit different
 - Noise very dependent on eta, layer
- A 'pedestal run'
 - establish this level for the electronics path impacting each cell
 - Measure the size, symmetry and stability of noise per channel

Pedestal Monitoring

- LArSCANoiseMonTool: pedestal dispersion for 144 cells in SCA (i.e. different samples)
 - Look for faulty SCAs
- LArOddCellsMonTool: channels 3x noise from pedestal (use DB or 1st 1k evts)
 - Sensitive to HV (2V, ~1MHz) noise bursts (ground loops)
- LArDigitNoiseMonTool:
 - compute pedestal/noise for all chan
 - Total noise/coherent noise calculation
 - 2 chan correlations
- LArFebNoiseMonTool: FEB as a scope by triggering on highest ADC sample
 - Can see 17 MHz and HV burst problems
 - Visual, expert-level tool

EMBA run 69125 high gain

Example: highNoiseHG BarrelAFT02LFront4Channel072

Ramp Monitoring

- Vary an input DAC value
 - readout the ADC value for each sample: fit to get peak
- Three gains: low, medium, high
 - For each, obtain output vs. input for each channel
 - Fit this
 - Slope and offset
 - Saturation/non-linearities
- Monitoring generally uses the slopes
 - Now done in LArRampBuilder
 - Ntuple output which is viewed with appropriate rootMacros (in development for ramps and delays)

Delay Monitoring

- Vary a 'delay' associated with each channel's signal
 - 1 ns increments
 - 25 iterations with different delays gives full pulse with 1ns sampling
- Resulting data gives
 - Time of peak and its stability (jitter)
 - Shape of pulse, incl. width
- LArCaliWaveBuilder
 - Does calculations in processing step
 - Check DB to see if n% deviation
 - Ntuple output to be run on by rootMacros

- Monitoring primarily an offline effort
 - Automated processing
 - Runs aborted if LArFEBMon indicates readout problem
 - Stress stability over accuracy early: basic checks will be # of descrepant channels per FEB, for instance
 - To view the offline results for the shifter: web display:

Under construction:

88469_88342_88349 - run 1	Castor	<u>archive</u>	Barrel_EMEC	15 Sep 2008 02:00:37
Partition : Barrel	<u>logfile</u>	<u>listFEBs</u>	<u>DQMFcheck</u>	
Pedestal JOB : Pedestal_88469_Barrel_EB-EMBA_LO	W (DONE-SUCCESS) DONE-S	UCCESS		
Pedestal JOB : Pedestal_88469_Barrel_EB-EMBC_LOV	W (DONE-SUCCESS) DONE-S	UCCESS		
x Delay JOB : Delay_88342_Barrel_EB-EMBA_LOW (DO	NE-SUCCESS) DONE-SUCCES	SS		
Delay JOB: Delay_88342_Barrel_EB-EMBC_LOW (DO	Web status			
x OFC JOB : OFC_88342_Barrel_EB-EMBA_LOW (DON)	11010 000000			
x OFC JOB : OFC_88342_Barrel_EB-EMBC_LOW (DON)	display			
x tauR JOB: tauR_88342_Barrel_EB-EMBA_LOW (DON)	E-SUCCESS) DONE-SUCCESS	3		
x tauR JOB : tauR_88342_Barrel_EB-EMBC_LOW (DON)	E-SUCCESS) DONE-SUCCESS	3		
x PhysWave JOB : PhysWave_88342_Barrel_EB-EMBA	LOW (DONE-SUCCESS) DON	E-SUCCESS		
x PhysWave JOB : PhysWave_88342_Barrel_EB-EMBC				
x OFCPhys JOB : OFCPhys_88342_5_Barrel_EB-EMBA	LOW (DONE-SUCCESS) DON	IE-SUCCESS		
x OFCPhys JOB : OFCPhys_88342_5_Barrel_EB-EMBC	LOW (DONE-SUCCESS) DON	IE-SUCCESS		
x OFCPhysOnePhase JOB : OFCPhysOnePhase_88342	_5_Barrel_EB-EMBA_LOW (DC	NE-SUCCES	S) DONE-SUCCESS	
x OFCPhysOnePhase JOB : OFCPhysOnePhase_88342	_5_Barrel_EB-EMBC_LOW (DC	NE-SUCCES	S) DONE-SUCCESS	
x OFCPhys JOB : OFCPhys_88342_25_Barrel_EB-EMB/				
x OFCPhys JOB : OFCPhys_88342_25_Barrel_EB-EMB0	C_LOW (DONE-SUCCESS) run	ning -> done		
x Ramp JOB : Ramp_88349_Barrel_EB-EMBA_LOW (DC	,			
x Ramp JOB : Ramp_88349_Barrel_EB-EMBC_LOW (DC	NE-SUCCESS) DONE-SUCCE	SS		
Partition : EMEC	<u>logfile</u>	<u>listFEBs</u>	<u>DQMFcheck</u>	
x Pedestal JOB : Pedestal_88469_EndCap_EB-EMECA_	LOW (DONE-SUCCESS) DONE	E-SUCCESS	,	

Conditions status: LArCoverageMonTool

o cell

Coverage - Sampling 1 - EMEC A

- 1 = in readout
- 2 = readout, calib
- 3 = readout, calibrated& not bad
 - It is important to keep track of known bad channels

Monitoring with Physics

- Both online and offline elements employed
 - Ultimately, readout integrity and basic digits: DSPs
 - Cells
 - Mostly post-OFC quantities (E,t,q): LArRawChannel, CaloCell
 - when have high E samples: digits written out (provides oscilloscope capability)
 - Clusters (CaloCluster)
 - LArMuID for muons
 - TopoCluster algorithm
- Typical jobOptions (for cosmics AND collisions, despite names!)
 - LArFEBMon
 - LArCoverage: overview of channel conditions availability
 - LArCosmicsMonTool: signal digits and sliding window plots
 - CaloCellVecMon: cell rate, average E and noise
 - CaloClusterCosmicsMon: topoCluster rate, average E and noise

Cosmic ray run Monitoring

Run 76702, 1/physics_HLT_Cosmics_NIM4
/LAr/EMBA/High_Energy_Digits/MuonShapeEBAECALDigits

Cosmic rays

- Valuable first signals from physical particles
- Tile: low noise, good identification
- LAr: high noise, difficult identification
- Monitoring strategies
 - ROI in LAr around Tile signal
 - Look at digits when trigger on high E cells
 - Normalize each pulse and average

Signal problems in cosmic runs

- Threshold # times max sample out of range: LArDigitMon
- Rate of Cells with E > threshold
 - CaloCellVecMon

높 로 14k

12R

10L 10R

08L 98R 12L

06L 06R

04L 04R

辨

OutOfRange_BarrelA

222

140

120

100

80

60

40

20

Entries

Mean x Mean y RMS x

RMS v

10

12

14 Slot

Number of cells with max digit out of the range I For : Barrel A I Cut: ADCCut=1200,range=[5,7]

Run 76702

Collisions Monitoring

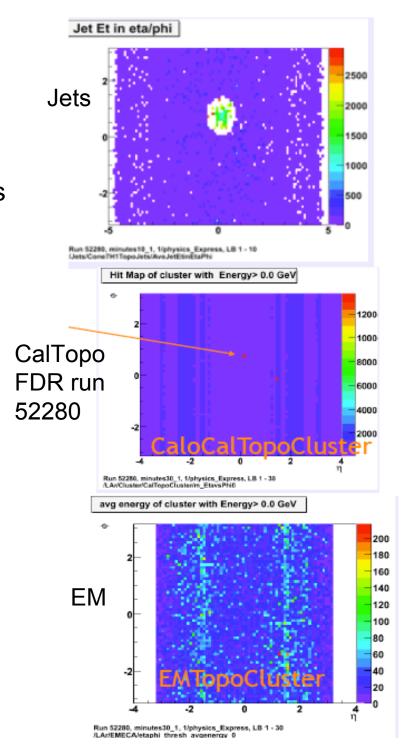
- Large energy deposition and high data rate: 'correct' timing
- How well building blocks of Jets/Etmiss/egamma observed
 - Cells
 - Clusters: intermittent noise issues
- Different streams (groups of triggers) have different roles
 - Muons: cell, cluster w/LArMuID
 - 2e: cluster/cell signal
 - Jets: cluster/cell signal
 - Min-bias: noise (cluster and cell level)
- F(inal)D(ress)R(ehearsal)
 - FDR1 (Winter) and FDR2 (+2b/c, Spring&Summer)
 - Several pb⁻¹ processed thru offline chain
 - reconstruction → streaming → monitoring
 - realistic mix of events (sans EM fakes)

Dead Crates

Run 52284, minutes10_11, 1/physics_Express LAr/EMECA

[Only Red] [Only Yellow] [Only Green]

CaloCell-VecMon



CaloCluster-CosmicsMon

- Directly linked to physics observables
 - If it shows up in clusters, it's probably impacting physics
- Size gives a granularity
 - easier to observe than cells
 - more precise than jets

Hit map of cells with > 0.9 E_cluster

Run 52283, 1/physics_Jet /CaloMon/CaloClusters/EMTopoCluster430EF_J33/Occupancy/etaphi_hotrat

Cluster **Properties**

- Distribution of energy within clusters
 - EM fraction, moments...
 - Should adhere to behavior from physics showers
- Currently monitor leading cell energy fraction
- Planning to combine with Tile

FDR run 5001

Trig Type	MB	2e l 5i
rate	rate I0Hz	
Time for 2K ev	3min (3 or 6 LB)	30 min or more

Trigger -aware monitoring

- Trigger selection
 - changes distributions substantially as expected
 - High pt triggers raise rate of cluster reconstruction
 - reduce rates per plot
 - argues against detailed lumi-block monitoring at low luminosity

Step 2: Data Quality & LAr

- This is the process by which data is formally determined to be good or bad for analysis
 - Monitoring info. Is the input
 - Algorithms run on this information to produce a result and status
 - There are 200 cells with E>1 TeV: status Bad!
 - Online result can be modified offline
 - With new conditions data: these 200 cells are known bad channels
 - If rest of calorimeter okay: DQ → Good
 - Automation needed to identify bad cells or regions
 - Compensates also for inexperienced, non-expert shifters
- LAr DQ assessed for eight regions
 - EMBA/C, EMECA/C, HECA/C and FCALA/C
 - Calibration runs DQ based primarily on LArFEBMon for now
 - Most physics runs CaloMonitoring DQ done per run
 - LArRawChannels results currently done with lumi-block granularity

D(ata)**Q**(uality)**M**(onitoring)**F**(ramework)

- A software framework for assessing data quality
 - Input is monitoring results (histograms, vectors...)
 - Apply algorithms to these
 - ROOT C++
 - Configuration parameters
 - Thresholds, ranges, etc.
- Three types of instance
 - OnlineSee nextSlides
 - Workbench (see tutorial)
 - Standalone in ROOT
 - .root input
 - By hand run of DQAlgorithms and specification of DQConfig

BasicHistoCheck.cxx
BinThreshold.cxx

Diff fileshold.cx/

KurtosistTest.cxx

BasicStatCheck.cxx

Chi2Test.cxx

RootFit.cxx

DQAlgorithms

BinContentComp.cxx

SideBand.cxx

Bins_Diff_FromAvg.cxx

GraphTest.cxx

SkewnessTest.cxx

BinsFilledOutRange.cxx

KolmogorovTest.cxx

to Tier0

DQ in the online system

- Histograms from OH post-Gatherer
 - Configuration
 - Results can include histograms: all archived

Requirements: https://edms.cern.ch/document/719917/1.0/
Architecture: https://edms.cern.ch/document/770411/1.0

Details: http://indico.cern.ch/conferenceDisplay.py?confld=a057209

DQ in the offline system

- Primarily in Tier0
 - FDR
 - M* weeks
 - Operate on .root files
- 'han' is offline framework
 - wraps around DQMF
 - Web-display with hierarchical organization of monitoring

http://atlasdqm.cern.ch/tier0/FDR2c/results_FDR2c.html

DQ for Physics Runs

- LAr implemented in most recent FDR2c
 - Trigger aware, no time granularity (whole runs)

FDR2c Monitoring

***Indicates reconstruction is in progress; histograms represent accumulated statistics and are temporary.

Run Number	T0 Iteration	Streams
52300	1	[physics Express] [NoStream] [physics Bphys] [physics Egamma] [physics Jet] [physics Muon]
	2	[physics Express]
52283	1	[physics Express] [physics Bphys] [physics Egamma] [physics Jet] [physics Muon]
	2	[physics Express]
52280	1	[physics Express] [physics Bphys] [physics Egamma] [physics Jet] [physics Minbias] [physics Muon]
	2	[physics_Express]

Run 52283, 1/physics_Jet: Monitoring and Automatic Checks

CaloMon - Red 💠	
CaloClusters - Red 💠	
CaloCalTopoClusterEF_J33 - Red	‡
Occupancy - Red 💠	
or display directories at current leve	

Offline Display

- Presented in web-browser
 - Navigable tree for each run
 - Stream
 - Subsystem
 - Monitoring tools
 - Final page has histogram array
- For each histogram
 - Click enlarges
 - DQ status given
 - Dialogs to show comparison plots

Cell DQ

Cluster DQ

Conclusions

- A broad range of tools in use for over 3 years
 - Online, offline and standalone
 - Two matur(ing!) packages for calibration and physics runs
 - LArMonTools
 - CaloMonitoring
 - A steadily improving understanding of how to do DQ
- Some major in-progress items
 - DSP monitoring
 - Ramp/delay outputs → rootMacros automated monitoring
 - Fuller set of cell/cluster level plots (e.g. shower shapes)

Beams data, clusters

Acknowledgments: Haleh Hadavand, Francesco Spano, Benjamin Trocme, Lee Sawyer, Ram Dhillipudhi, Jessica Leveque, Michel Lefebvre, Yuriy Ilchenko, Tayfun Ince

Thanks for physics plots: Pavel Zarzhitsky, Azzedine Kasmi, Kamile Dindar