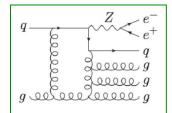
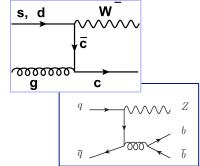
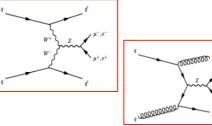
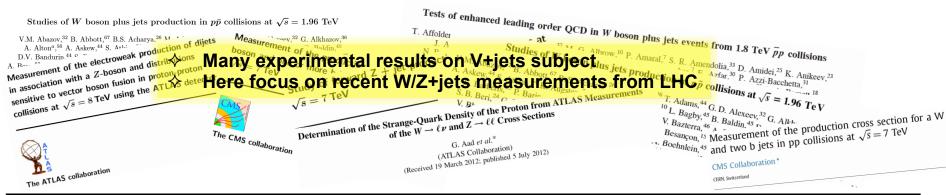
Constraining QCD and electroweak physics with vector boson plus jets events

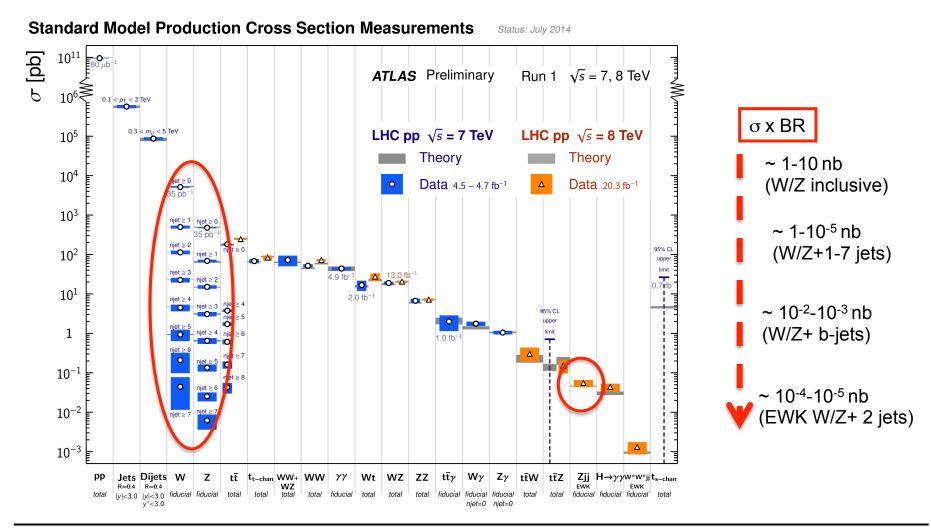

Alessandro Tricoli (CERN)

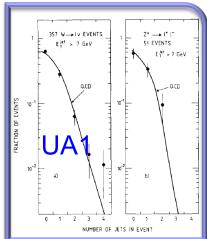

23rd September 2014

CERN EP Seminar

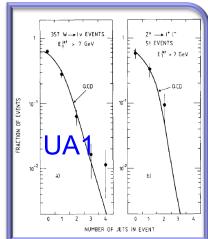

Introduction

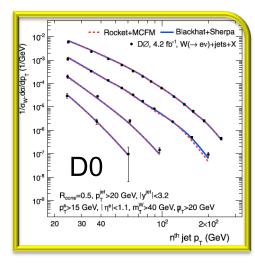

Constraining QCD calculations and simulations => with Vector boson + inclusive jets


- Constraining proton parton modelling and perturbative QCD modelling
 => with Vector boson + heavy-flavour jets
- Constraining *Electroweak and QCD physics* => with Vector boson plus two forward jets
- Run 2 prospects and challenges


23rd September 2014

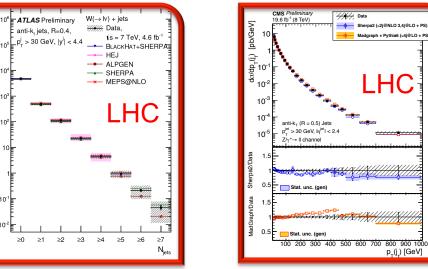
Standard Model Snapshot at LHC

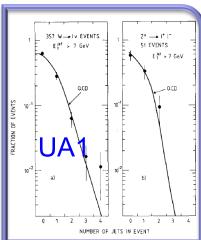


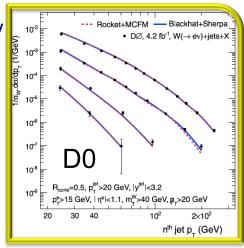

- With V+jets we can probe different aspects of QCD calculations
- Our understanding and modeling of the QCD interactions has direct impact on the potentials for precision measurements and discoveries

- With V+jets we can probe different aspects of QCD calculations
- Our understanding and modeling of the QCD interactions has direct impact on the potentials for precision measurements and discoveries
- In the last 30 years many measurements of V+jets event properties starting from UA1, UA2

- With V+jets we can probe different aspects of QCD calculations
- Our understanding and modeling of the QCD interactions has direct impact on the potentials for precision measurements and discoveries
- In the last 30 years many measurements of V+jets event properties starting from UA1, UA2
- □ Tevatron Legacy on LHC V+jets analyses
- Most of current theory predictions still tuned to Tevatron data




- With V+jets we can probe different aspects of QCD calculations
- Our understanding and modeling of the QCD interactions has direct impact on the potentials for precision measurements and discoveries
- In the last 30 years many measurements of V+jets event properties starting from UA1, UA2
- Tevatron Legacy on LHC V+jets analyses

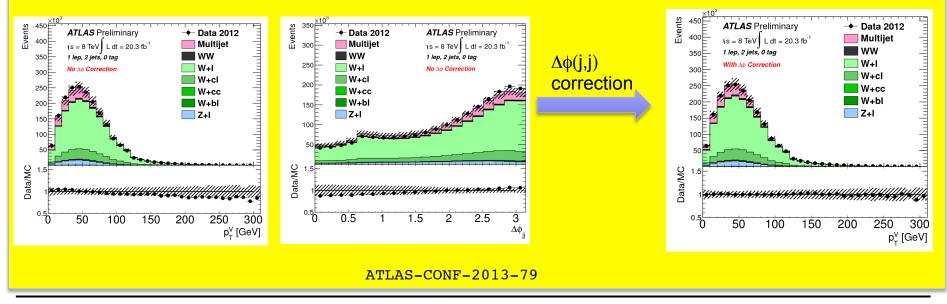

\$

- Most of current theory predictions still tuned to Tevatron data
- Larger cross-sections available at LHC and larger integrated luminosity
- LHC is not a simple rescaling of Tevatron scattering
 - different Bjorken-x, parton densities and subprocesses

p_(j_) [GeV]

Further Motivations

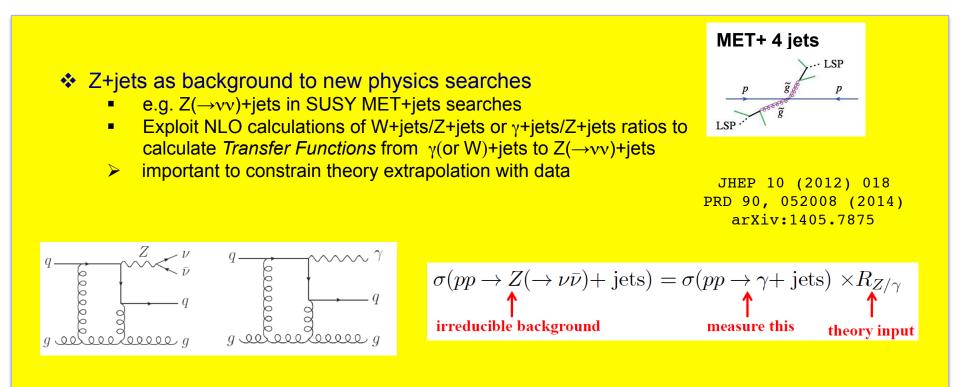
- Accurate modeling of V+jets is of paramount importance for the success of a collider physics program
 - W/Z+jets is dominant background to Top-quark measurements


Further Motivations

Accurate modeling of V+jets is of paramount importance for the success of a collider physics program

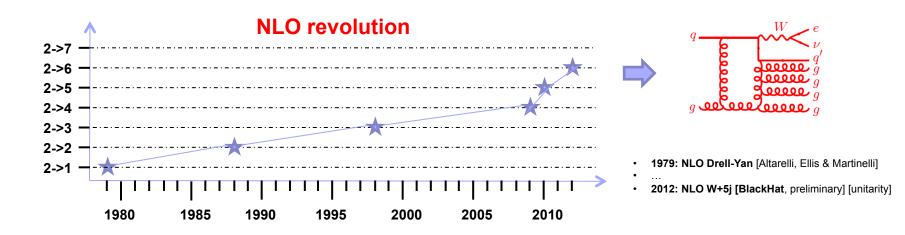
- W/Z+jets is dominant background to Top measurements
- Important for precision Higgs physics (background modeling)

• VH(\rightarrow bb): control of V+jets background is challenging


- analysis binned in V-boson p_T to exploit varying S/B vs V-boson p_T and N_{iets}
- mismodeling of $\Delta \phi$ (jet-jet) affects V-boson p_T shape => improved V-boson p_T after correction

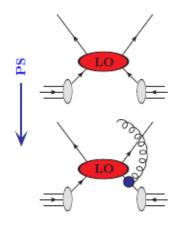
Further Motivations

Accurate modeling of V+jets is of paramount importance for the success of a collider physics program


- Dominant background precision Top measurements
- Important for precision Higgs physics (background modeling)
- Important for modeling of SM background in searches of new particles, e.g. SUSY

V+jets predictions: NLO Revolution

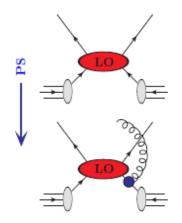
Steady improvement of Fixed Order pQCD predictions


- From LO to NLO pQCD
 - o better Normalisation and Distribution Shapes, smaller Theoretical Uncertainty

- Fixed-order NLO pQCD calculations: BlackHat, MCFM
- □ Approximate NNLO for V+1 jet: LoopSim
 - estimate NNLO corrections for processes with very large NLO K-factors

Great progress in Monte Carlo generator in past years

pQCD accuracy	MC versions
LO Matrix Element (M.E.) + Parton Shower (P.S.)	Pythia, Herwig

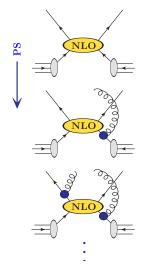


➢ LO M.E.

Soft and collinear emission simulated by P.S.

Great progress in Monte Carlo generator in past years

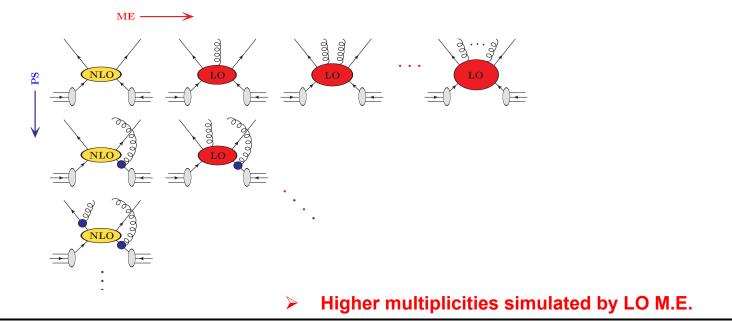
pQCD accuracy	MC versions
LO Matrix Element (M.E.) + Parton Shower (P.S.)	Pythia, Herwig
Multi-parton LO + P.S.	Alpgen, Sherpa 1.4, Madgraph



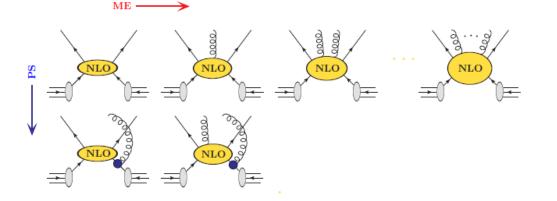
Multiple parton emission simulated at LO in M.E
 Soft and collinear emission still done by P.S.

23rd September 2014

Great progress in Monte Carlo generator in past years


pQCD accuracy	MC versions
LO Matrix Element (M.E.) + Parton Shower (P.S.)	Pythia, Herwig
Multi-parton LO + P.S.	Alpgen, Sherpa 1.4, Madgraph
[N]NLO for lowest multiplicity M.E. + P.S.	(a)MC@NLO, Powheg [NNLOPS], Herwig++

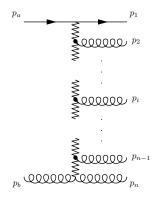
> M.E. accurate to NLO, matched to P.S.


Great progress in Monte Carlo generator in past years

pQCD accuracy	MC versions
LO Matrix Element (M.E.) + Parton Shower (P.S.)	Pythia, Herwig
Multi-parton LO + P.S.	Alpgen, Sherpa 1.4, Madgraph
[N]NLO for lowest multiplicity M.E. + P.S.	(a)MC@NLO, Powheg [NNLOPS], Herwig++
NLO for lowest multiplicity M.E., LO for other multiplicities + P.S.	Sherpa 1.4 MEnloPS, (Powheg MiNLO Zjj/Wjj)

Great progress in Monte Carlo generator in past years

pQCD accuracy	MC versions
LO Matrix Element (M.E.) + Parton Shower (P.S.)	Pythia, Herwig
Multi-parton LO + P.S.	Alpgen, Sherpa 1.4, Madgraph
[N]NLO for lowest multiplicity M.E. + P.S.	(a)MC@NLO, Powheg [NNLOPS], Herwig++
NLO for lowest multiplicity M.E., LO for other multiplicities + P.S.	Sherpa 1.4 MEnloPS, (Powheg MiNLO Zjj/Wjj)
NLO for higher parton multiplicity M.E. + P.S	aMC@NLO, Sherpa 2.x MEPS@NLO



Sherpa MEPS@NLO implements BlackHat NLO calculations for 1 and 2 partons

- NLO accuracy for each leg
- P.S. accuracy in collinear and soft regimes

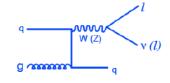
Great progress in Monte Carlo generator in past years

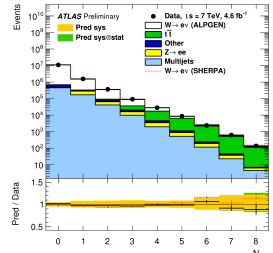
pQCD accuracy	MC versions
poco accuracy	
LO Matrix Element (M.E.) + Parton Shower (P.S.)	Pythia, Herwig
Multi-parton LO + P.S.	Alpgen, Sherpa 1.4, Madgraph
[N]NLO for lowest multiplicity M.E. + P.S.	(a)MC@NLO, Powheg [NNLOPS], Herwig++
NLO for lowest multiplicity M.E., LO for other multiplicities + P.S.	Sherpa 1.4 MEnloPS, (Powheg MiNLO Zjj/Wjj)
NLO for higher parton multiplicity M.E. + P.S	aMC@NLO, Sherpa 2.x MEPS@NLO
Resummation of all orders in $\alpha_{\rm s}$ (parton level) – validity in the high energy limit	HEJ

- "All-orders", rather than "fixed-order" calculation
 - LL-accuracy resummation for large invariant mass between jets, matched to tree-level accuracy for multiplicities up to 4 jets
- BFKL-inspired
- > Approximation which captures hard wide-angle emissions

Great progress in Monte Carlo generator in past years

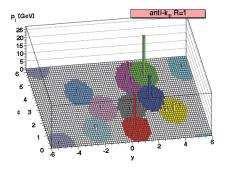
pQCD accuracy	MC versions
LO Matrix Element (M.E.) + Parton Shower (P.S.)	Pythia, Herwig
Multi-parton LO + P.S.	Alpgen, Sherpa 1.4, Madgraph
[N]NLO for lowest multiplicity M.E. + P.S.	(a)MC@NLO, Powheg [NNLOPS], Herwig++
NLO for lowest multiplicity M.E., LO for other multiplicities + P.S.	Sherpa 1.4 MEnloPS, (Powheg MiNLO Zjj/Wjj)
NLO for higher parton multiplicity M.E. + P.S	Sherpa 2.x MEPS@NLO
Resummation of all orders in $\alpha_{\rm s}$ (parton level) – validity in the high energy limit	HEJ

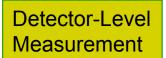

- Despite this great theoretical progress there are still theory uncertainties related to various sources which can be constrained by data
 - Higher order QCD corrections (NNLO)
 - Electroweak corrections
 - Parton Shower and its matching to Matrix Element
 - Parton Density Functions
 - Underlying Event modeling


Analysis methodology

- □ W/Z clean signatures in leptonic decay channels
 - Trigger events on charged leptons
 - Often measurement in both e, μ channels
 - useful cross-check and can constrain uncertainties
 - Selection by cuts on inv. Mass (Z) or $M_T(W)$, Missing $E_T(W)$
- □ Z+jets has small background contamination
- □ W+jets has larger background contributions from
 - multi-jet: ~5-15%
 - o extracted by data-driven techniques
 - ttbar: ~ 0% (1 jet) 20% (Z+6jets) 80% (W+6 jets)
 - estimated by MC or in a data-driven way or suppressed by b-jet veto

	Eff [%]	Unf [%]	Lumi [%]	Bgnd $[\%]$	PU [%]	JER [%]	JEC [%]	stat [%]	Tot. Unc. [%]	$N_{\rm jets}$
	1.3	1.5	2.6	0.048	0.29	0.55	4.5	0.11	5.4	= 1
	1.2	1.5	2.6	0.25	0.32	0.36	6.3	0.24	6.9	= 2
	1.2	1.3	2.6	0.54	0.37	0.35	8.5	0.58	9.0	= 3
CMS Z+jets at 8 TeV	1.4	1.2	2.6	0.93	0.46	0.28	11	1.3	11	= 4
	1.5	2.6	2.6	1.3	0.75	0.52	15	3.0	15	= 5
	1.4	2.2	2.6	2.1	1.5	0.48	19	7.5	21	= 6
	1.6	2.5	2.6	3.0	4.1	2.40	17	19	27	= 7




Analysis methodology

- Measure absolute or normalised differential cross sections in fiducial phase spaces
 - event-based observables => N_{iets} , boson p_T , W M_T , H_T , event-shapes
 - jet-based observables => nth-jet p_T, y
 - Measure angular correlations (jet-jet, lepton-jet, Z-jet) => $\Delta \phi$, ΔR , Δy , m_{ji}

□ Various of jet algorithms:


- Tevatron: cone algorithms,
 - e.g Midpoint R=0.5
- LHC: anti-k_T R=0.4 (ATLAS), 0.5 (CMS, LHCb)

Particle-Level Measurement/Prediction

♦ MC simulations provide particle level final states

♦ Parton-level calculations (BlackHat, MCFM) corrected for Non-Perturbative effects

- hadronisation and underlying event (3-4% corr.)
- ♦ Fixed order NLO uncertainties:
 - scales (renorm. and fact.): 4-13%
 - o parton densities:1-3%, α_s : 1-3%

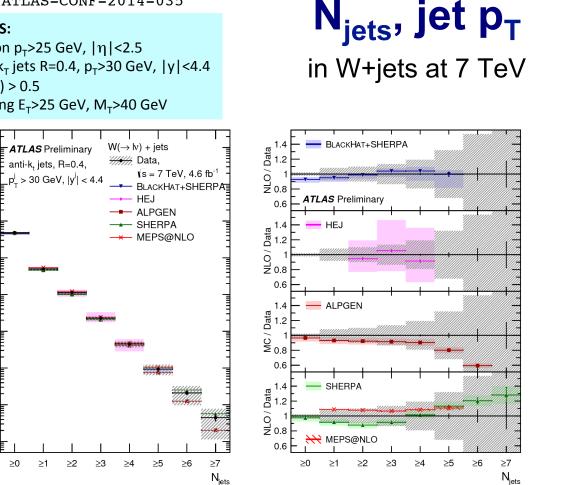
ATLAS-CONF-2014-035

ATLAS:

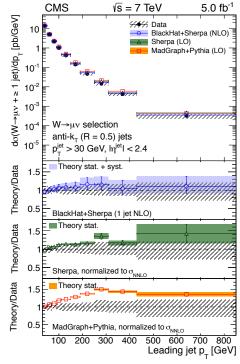
σ(W+N_{jets}) [pb]

10⁵

10

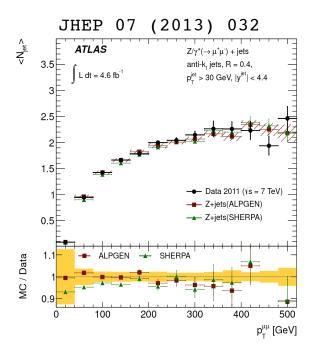

10

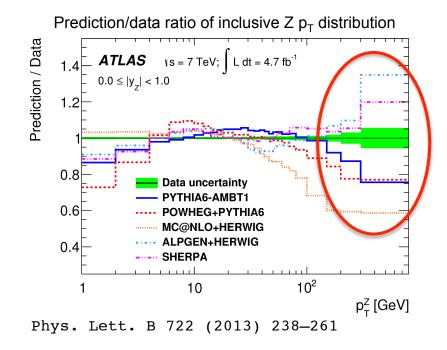
10


10

10-2

Lepton p_{τ} >25 GeV, $|\eta|$ <2.5 Anti- k_{τ} jets R=0.4, p_{τ} >30 GeV, |y|<4.4 $\Delta R(l,j) > 0.5$ Missing E_T>25 GeV, M_T>40 GeV


arXiv.1406.7533 CMS: Muon p_{τ} >25 GeV, $|\eta|$ <2.1 Anti- k_{τ} jets R=0.5, p_T>30 GeV, $|\eta| < 2.4$ $\Delta R(\mu,j) > 0.5$ M_T>50 GeV


Extraordinary agreement between experiments and theory over 5 orders of magnitude in cross-sections

- High experimental accuracy exposes discrepancies with predictions
 - LO multileg+PS overestimate data at high jet scales (jet p_{T})

Lepton $p_T>20 \text{ GeV}$, $|\eta|<2.5$ 66 < m_{\parallel} < 116 GeV Anti- k_T jets R=0.4, $p_T>30 \text{ GeV}$, $|\gamma|<4.4$ $\Delta R(\text{lept,jet}) > 0.5$

- ★ At large p_T^Z multi-jet events contribute to inclusive $Z + \ge 1$ jets
 - MC with NLO accuracy on inclusive Z production undershoot data
 - Multi-jet generator overpredict high Z p_T
- Higher-order EW corr. expected to reduce cross section by 5-20% at p_T^Z > 100 GeV (non included in main stream MC's)

ATLAS-CONF-2014-035

ATLAS:

Lepton $p_T>25$ GeV, $|\eta|<2.5$ Anti- k_T jets R=0.4, $p_T>30$ GeV, |y|<4.4 $\Delta R(I,j) > 0.5$ Missing $E_T>25$ GeV, $M_T>40$ GeV

Angular distributions in W+jets at 7 TeV

- Angular distributions provide important test of QCD modeling:
 - Hard radiation at large angles
 Modeled by M.E.
 - Unresolved soft/collinear radiation
 And Modeled by P.S.
- Important for Higgs selection and to study VBF/VBS mechanisms

 $(1/\sigma_{W^{+\geq 2j}}) d\sigma_{W^{+\geq 2j}} d\Delta y_{j1,j2}$ BLACKHAT+SHERPA **4***TI* **AS** Preliminary Data Data anti-k, jets, R=0.4 VLO/ s = 7 TeV. 4.6 fb $p_{-}^{J} > 30 \text{ GeV}, |y'|$ BLACKHAT+SHERP HEJ LAS Preliminary ALPGEN HF.J AFPS@NLO NL0/1 10 AL PGEN Data 10-2 √ ₩0.8 SHERE Data 1.2 10 ò J 0.8 0 4 5 6 0 2 з 6 $\Delta \; \textbf{y}_{_{j1,j2}}$ $\Delta y_{j1,j2}$

- **BlackHat** in good agreement with data on $\Delta y(j,j)$
- Higher experimental precision exposes data-predictions discrepancies

ATLAS-CONF-2014-035

ATLAS:

Lepton $p_T>25$ GeV, $|\eta|<2.5$ Anti- k_T jets R=0.4, $p_T>30$ GeV, |y|<4.4 $\Delta R(I,j) > 0.5$ Missing $E_T>25$ GeV, $M_T>40$ GeV

> $(1/\sigma_{W^{+\geq 2j}})d\sigma_{W^{+\geq 2j}}/dm_{12}$ [1/GeV] BLACKHAT+SHERPA ATLAS Preliminary $W(\rightarrow hv) + \ge 2$ jet 1.4 Data 1.2 Data Here Data, anti-k. jets. R=0.4 1 NLO/1 8.0 NLO Is = 7 TeV, 4.6 fb⁻¹ $p_{\tau}^{j} > 30 \text{ GeV}, |y^{j}| < 4$ - BLACKHAT+SHERPA-HEJ LAS Preliminary 0.6 ALPGEN - SHERPA HEJ NLO / Data 8.0 NLO / Data 8.0 NLO / Data - MEPS@NLO 0.6 10 ALPGEN 1.4 ... 7.1 Data 8.0 MC 10 0.6 NLO / Data 8.0 NLO / Data 8.0 NLO / Data 10 HEPS@NLO 10 0.6 400 600 800 1000 1200 1400 1600 1800 2000 400 600 800 1000 1200 1400 1600 1800 2000 0 200 200 0 m₁₂ [GeV] m₁₂ [GeV]

□ Fixed-order NLO calculation (BlakHat) underestimate the high m_{ii} region

m_{ii} in W+jets at 7 TeV

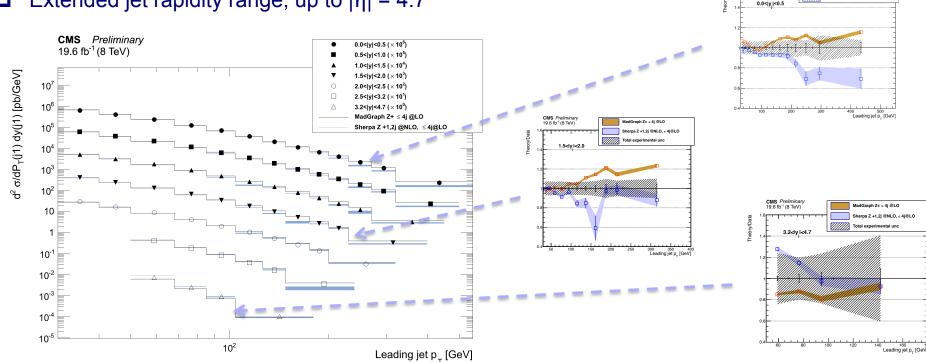
- □ BFKL-like resummation (*HEJ*) is in agreement with data on m_{ii}
- Discrepancies of LO and NLO multi-leg MC predictions
 - room for MC tuning, e.g. P.S, M.E.- P.S matching

Matrix Element – Parton Shower Parton densities

iGraph Z+ ≤ 4j @L0

CMS-PAS-SMP-14-009

Double differential cross sections in Z+jets at 8 TeV

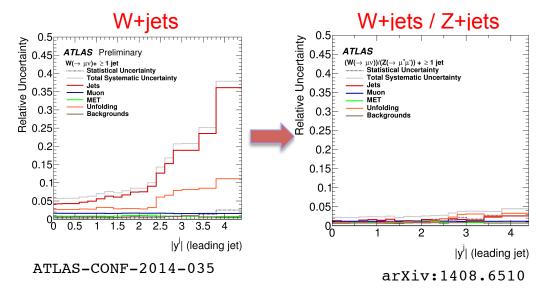

First double differential measurement:

leading jet p_T and rapidity (like in jet measurements)

- also suitable for PDF fitting
- Extended jet rapidity range, up to $|\eta| = 4.7$

CMS: Muon p_{τ} >20 GeV, $|\eta|$ < 2.4 Anti- k_{τ} jets R=0.5, p_T>30(50) GeV, $|\eta| < 2.5$ (>2.5) $\Delta R(\mu,j) > 0.5$ M_T>50 GeV

CMS Preliminar 19.6 fb⁻¹ (8 TeV)

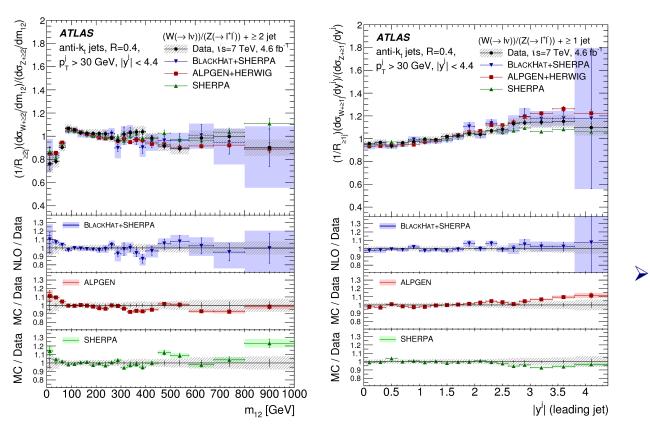

For central jets the precision of experimental measurements is higher than prediction-to-prediction differences

up to ±20% data-theory discrepancies (Madgraph, Sherpa MEPS@NLO) in high p_T tails of 1st jet

Cancellation of uncertainties in ratios

Ratio measurements allow for cancellations of uncertainties (exp. and theory)

Experimental: jet calibration uncertainties, lumi etc.



- Theory: (if treated as correlated between numerator and denominator)
 - scale+PDF uncertainties: 20% (W+1j) -> 2-4% on W+1j/Z+1j at jet p_T =800 GeV
 - Accurate test of SM predictions
 - > Important for Z(vv)+jets background estimation in searches (see transfer factor)
 - Model-independent searches of new physics

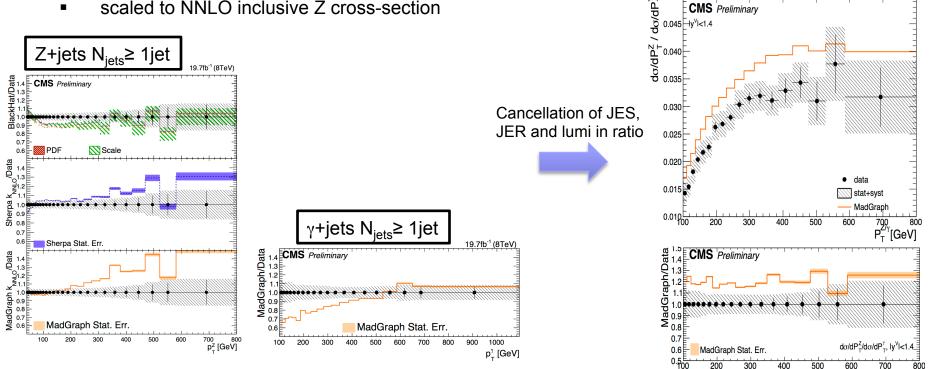
Lepton $p_T>25$ GeV, $|\eta|<2.5$ Anti- k_T jets R=0.4, $p_T>30$ GeV, |y|<4.4 $\Delta R(I,j) > 0.5$ W: Missing $E_T>25$ GeV, $M_T>40$ GeV Z: 66<m_{II}<116 GeV

Mismodeling seen in W+jets and Z+jets separately mostly cancel in R_{jets}

- Significant discrepancies with theory in some regions of phase space
 - e.g. high leading-jet rapidity

CMS-PAS-SMP-14-005

Z+jets / γ+jets ratio


At large V-boson p_T QCD and EW introduce large high-order corr.

Lepton p_{τ} >20 GeV $|\eta|$ <2.4 V-boson p_T>100 GeV V-boson |y| < 1.4Anti-Kt R=0.5 jet p_{τ} >30 GeV, $|\eta|$ <2.4 $\Delta R(l,j) > 0.5$

CMS Preliminary

19.7fb⁻¹ (8TeV)

- NLO (BlakHat) underestimate data at Z $p_{\tau} \ge 100$ GeV by ~10%
- LO multileg MC (Madgraph, Sherpa) overestimate high Z p_T
 - scaled to NNLO inclusive Z cross-section

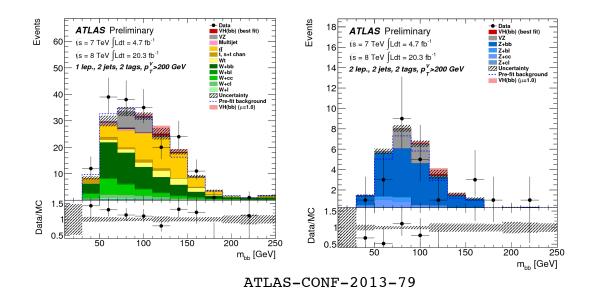
In Z/γ Ratio:

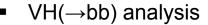
- flattening at high $Z/\gamma p_{T}$
- over-estimation of ratio by a flat 20% by LO Multi-leg MC
- shape is well modeled (cancellation of mis-modeling of individual Z and γp_T)

P^{Z/γ}_T[GeV]

Ratios in Z+jets

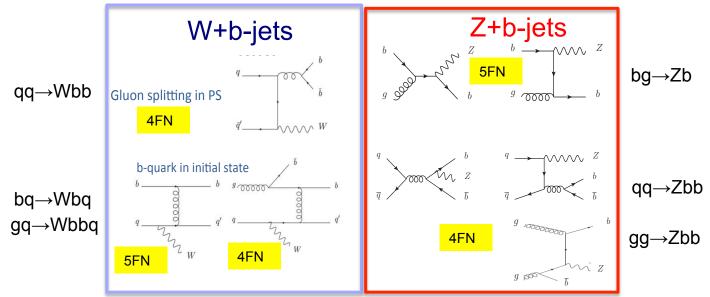
- Test limit of validity of NLO pQCD calculation (where large logs are expected or missing higher orders)
- **\Box** Fixed-order NLO fails at large $p_T^Z/p_T^{1 \text{st jet}}$ due to missing higher predictions
 - 3-jet emission only at LO in BlackHat
- Parton shower adds soft jets and provides better description of high tails

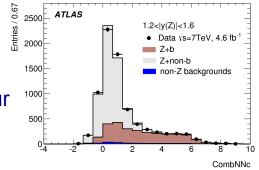

CMS-PAS-SMP-14-005


Vector Boson + heavy-favour jets

W,Z + heavy-flavour jets

□ Theoretical uncertainties on W/Z+heavy flavour jets are larger than for light jets

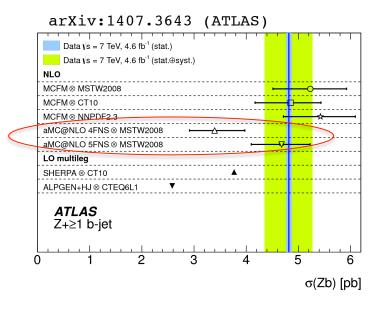

- heavy-quark content in the proton
- modeling of gluon splitting (initial state, final state)
- massive vs massless b-quark in calculations
- □ Test of QCD predictions with various implementations (LO multileg+PS, NLO, NLO+PS)
- □ Very important processes as background to Higgs and searches

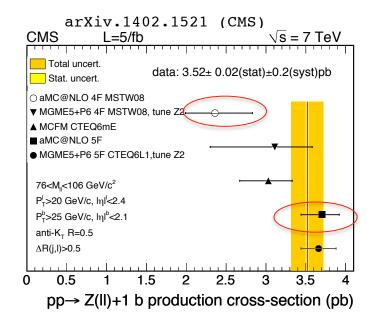


2 b-jet resolved topology

W,Z + b-jets processes and analysis strategy

- Descriptions of "b-initiated processes"
 - 4 flavors number scheme (4FNS): b-quark generated through gluon splitting
 - 5 flavors number scheme (5FNS): b-quark generated in the initial state by DGLAP evolution
- Experimental analysis strategy:
 - b-jet tagging
 - Exploit long life-time and large masses of b-hadrons (e.g. secondary vertex and large impact parameter)
 - Signal extraction based on fit to distributions sensitive jet-flavour
 - i.e. b-tagging weight distribution
 - Templates based on MC, but checked in data control regions

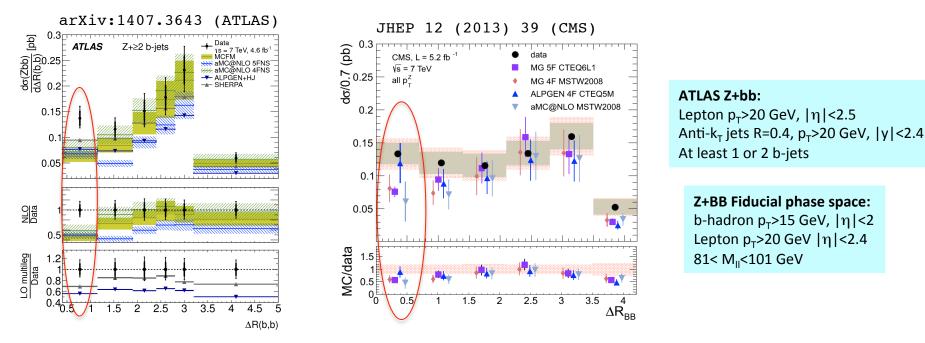

Heavy-flavour quark modeling


ATLAS:

Lepton p_T >20 GeV, $|\eta|$ <2.5 Anti- k_T jets R=0.4, p_T >20 GeV, $|\gamma|$ <2.4 At least 1 or 2 b-jets

Z + ≥ 1 b-jet

CMS: Lepton p_T >20 GeV, $|\eta|$ <2.4 Anti- k_T jets R=0.5, p_T >25 GeV, $|\eta|$ <2.1 Exactly 1 or at least 2 b-jets

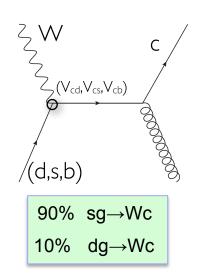


- MCFM: <u>5FN</u> NLO Z+b, Z+bb, massless b-quarks
- **aMC@NLO** <u>4FN</u>: NLO Z+bb, and Z+b, massive b-quarks
- aMC@NLO <u>5FN</u>: NLO for Z+b, LO for Z+bb
- Sherpa: <u>5FN</u> Z+b LO+PS, massive b-quark
- Alpgen: <u>4FN</u> Z+b LO+PS, massive b-quark
- Madgraph: <u>5FN</u>LO+PS, massless b-quark
- **Madgraph:** <u>4FN</u>LO+PS, massive b-quark

- LO+PS generators underestimate cross sections
- NLO agrees well with data
- Z+b data favor NLO 5FN
 - NLO 4FNS underestimate the measurement
- Cannot constrain b-PDF yet due to large NLO QCD scale uncertainty

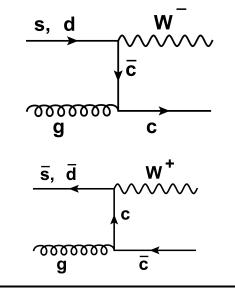
Z + ≥ 2 b's

- □ Z+bb cross section tends to prefer 4FN scheme instead
- □ Z+bb data sensitive to different underlying processes
 - Contribution from by two hard initial state or final state gluon splitting with resolved b-jets
- Distribution shapes generally well described by predictions
- Except for configurations with nearby b-jets, dominated by gluon splitting

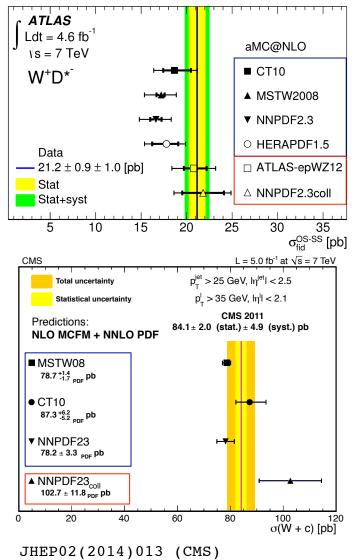


Exclusive reconstruction of B-hadrons in Z+ BB avoids limitation of b-jet size radius

B-hadrons identified from displaced secondary vertices, reconstructed from charged decay products

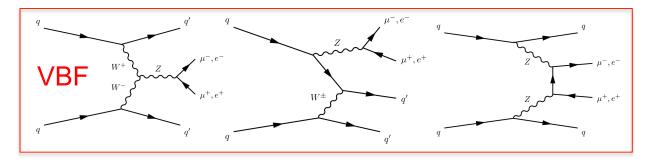

W + charm

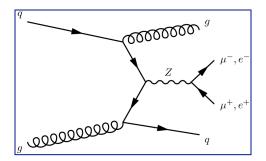
- W+c sensitive to strange quark content in proton
 - gluon splitting treated as background
- Strange-quark usually suppressed by factor ½ wrt down-quark in PDF
 - as suggested by v-N DIS (NuTev)
- ATLAS W/Z cross section measurements favour strange-quark enhancement


□ Charm candidates identified with two strategies

- Soft muon tagged inside a jet
- Exclusive decays of the charmed hadrons D[±] and D^{*±}
- Use the W-charm charge correlation to suppress backgrounds (e.g. gluon splitting, multijet, etc..)
 - Same-sign contribution is subtracted
 - \Rightarrow Measuring OS-SS yields

JHEP05(2014)068 (ATLAS)

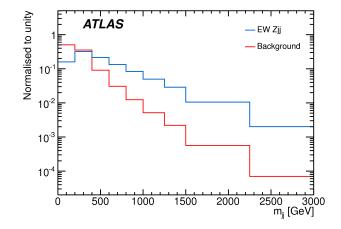

ATLAS:


W: Lepton $p_T>20$ GeV, $|\eta|<2.5$ Missing $E_T>25$ GeV, $M_T>40$ GeV c-jet: $p_T>25$ GeV, $|\eta|<2.5$ D:pT>25 GeV, $|\eta|<2.5$

- Overall agreement with NLO QCD predictions
- Cross section depends on PDF
- ATLAS data suggests s-quark enhancement (ATLAS-epWZ12 and NNPDF2.3coll with enhanced strange)
 - Consistently with inclusive W/Z data results
- CMS data in better agreement with suppressed strange

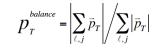
Electroweak vs QCD production of Vector Boson + 2 jets

Electroweak Z+2jets production is 1% of inclusive Z+2jets cross section


Electroweak production

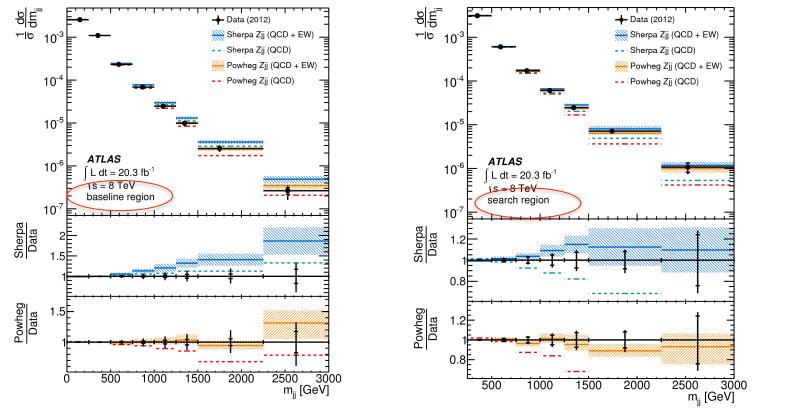
□ To enhance events with VBF contribution:

- Tag well-separated jets in rapidity with large m_{ii}
 - no color flow in region between the two quarks (low jet activity in rapidity interval)


Measurements by ATLAS and CMS at 8 TeV

□ ATLAS 5 phase space regions with different sensitivity to the EW Z+2j production

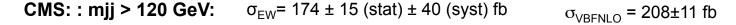
ATLAS

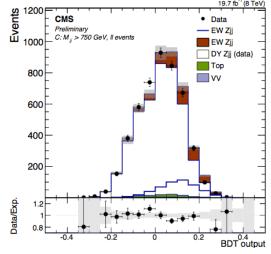

Object	baseline	high-mass	search	control	$high$ - $p_{\rm T}$	
Leptons	$ \eta^{\ell} < 2.47, p_{\mathrm{T}}^{\ell} > 25 \mathrm{GeV}$					
Dilepton pair	$81 \le m_{\ell\ell} \le 101 {\rm GeV}$					
	-	_	$p_{\mathrm{T}}^{\ell\ell} > 2$	_		
Jets		$ y^j < 4.4, \ \Delta R_{j,\ell} \ge 0.3$				
	$p_{\rm T}^{j_1} > 55 { m GeV}$ p				$p_{\rm T}^{j_1} > 85{\rm GeV}$	
		$p_{\rm T}^{j_2} > 0$	$p_{\rm T}^{j_2} > 45 { m GeV}$ $p_{\rm T}^{j_2} > 75 { m GeV}$			
Dijet system	_	$m_{jj} > 1 \mathrm{TeV}$	$m_{jj} > 250 \mathrm{GeV}$			
Interval jets	_	_		$N_{\rm jet}^{\rm gap} = 0$ $N_{\rm jet}^{\rm gap} \ge 1$		
Zjj system	_		$p_{\mathrm{T}}^{\mathrm{balance}} < 0.15$	$p_{\rm T}^{\rm balance,3} < 0.15$		

- Z-boson selection
- Baseline jet selection
- Search/control cuts for electroweak extraction and modeling of Strong Z+2j production
- Probe impact of EWK Z+2j on high-p_T or high-mass

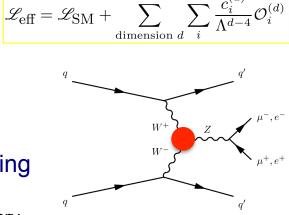
Laboratory for studying generator behavior in VBF/VBS context

normalized differential cross section as a function of m_{ii} in different regions




Powheg accurate to NLO in QCD for Z+2j production
 Sherpa accurate only to LO in QCD for Z+2j production

 Strong Z+2j prediction undershoots m_{ii} in search region


- EW Zjj component extracted by a 2-template fit to the m_{jj} spectrum (or discriminator output - CMS) in *search region*
- Strong Zjj production model constrained from data
 - ATLAS: control region has reverted jet veto
 - Correct the simulation in *search region* using the data/MC ratio in *control region*, to better model jet dynamics and constrain experimental systematics
 - CMS: strong Z+2j model built from γ+2j data reweighting γ-p_T
 - background-only hypothesis excluded with significance above 5σ for both ATLAS and CMS
 - EW Zjj production cross section measured in signal fiducial regions in agreement with theory prediction:

ATLAS: mjj > 250 GeV: $\sigma_{\rm EW} = 54.7 \pm 4.6 \,(\text{stat}) \,^{+9.8}_{-10.4} \,(\text{syst}) \pm 1.5 \,(\text{lumi}) \,\text{fb}$ $\sigma_{\rm Powheg} = 46.1 \pm 0.2 \,(\text{stat}) \,^{+0.3}_{-0.2} \,(\text{scale}) \pm 0.8 \,(\text{PDF}) \pm 0.5 \,(\text{model}) \,\text{fb}$

- Constrain new physics in a model independent approach (complementary to direct searches)
 - SM: a low-energy effective theory of a more complete but unknown theory
 - Modification of gauge boson self-interactions
- Constrain anomalous Triple Gauge Coupling (aTGC) on VBF vertex

- 95% confidence intervals on aTGC parameters from counting the number of events in search region with m_{ii}>1 TeV
 - Not as stringent as limits set in di-boson production but complementary, as two of vector bosons have space-like four-momentum-transfer

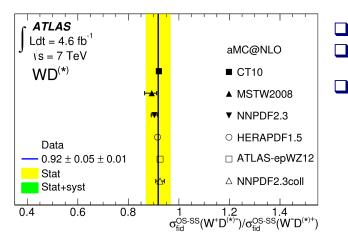
aTGC	$\Lambda = 6 \mathrm{TeV} (\mathrm{obs})$	$\Lambda = 6 {\rm TeV} ({\rm exp})$	$\Lambda = \infty \text{ (obs)}$	$\Lambda = \infty \ (\exp)$
$\Delta g_{1,Z}$	[-0.65, 0.33]	[-0.58, 0.27]	[-0.50, 0.26]	[-0.45, 0.22]
λ_Z	[-0.22, 0.19]	[-0.19, 0.16]	[-0.15, 0.13]	[-0.14, 0.11]

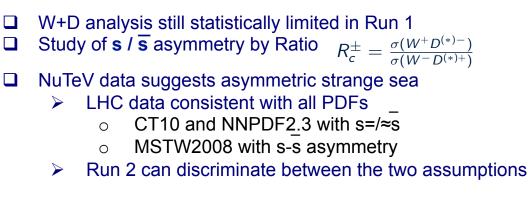
$$\frac{\mathcal{L}}{g_{WWZ}} = i \left[g_{1,Z} \left(W^{\dagger}_{\mu\nu} W^{\mu} Z^{\nu} - W_{\mu\nu} W^{\dagger\mu} Z^{\nu} \right) + \kappa_Z W^{\dagger}_{\mu} W_{\nu} Z^{\mu\nu} + \frac{\lambda_Z}{m_W^2} W^{\dagger}_{\rho\mu} W^{\mu}_{\nu} Z^{\nu\rho} \right]$$

Unitarisation of couplings by dipole form factor

$$a(\hat{s}) = \frac{a_0}{(1 + \hat{s}/\Lambda^2)^2}$$

 Λ = unitarisation scale


Future prospects


Lesson from Run 1, prospects for Run 2

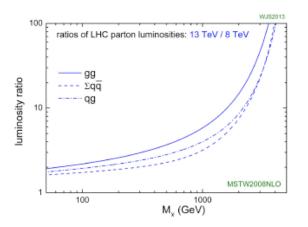
- □ Many W/Z+jets experimental results performed with Run 1 data
 - \diamond W/Z+jets physics will still be critical in LHC Run 2 with higher \sqrt{s} and larger integrated luminosity
- LHC measurements have already reached sensitivity to QCD effects beyond the NLO accuracy of differential calculations and are approaching sensitivity to EW corrections
- Full NNLO QCD corrections will reduce scale uncertainties and can improve sensitivity to PDF, e.g. high-x gluon
- A variety of measurements already available for *re-tuning of Monte Carlo's* and *constrain PDF*
- Accuracy of the theoretical tools (MC and PDF) need re-assessment at higher √s in new regions of phase space
- □ New measurements possible: ratios of cross-sections at different \sqrt{s} (cancellations of uncertainties)

Run 2 Prospects

Examples of W/Z+jets analyses limited by statistics in Run 1

- $\hfill\square$ High N_{jets} , jet p_T distributions in W/Z+jets
- □ Z+BB statistically limited in Run 1
- □ High mjj in Z+2j in EWK search region

LHC harsher conditions in Run 2

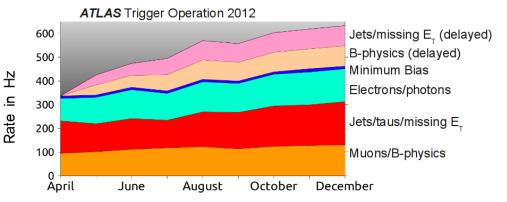

- Run 2 will open new possibilities for discoveries of new physics, rediscovery of SM processes with higher centre-ofmass energy and luminosities
 - Increase of production cross-sections at 13 TeV
- □ However experimental environment will be harsher
 - higher pileup
 - larger trigger rate
 - larger data volume
- LHC detectors upgrades in various subsystems,
 - e.g. tracker, muon system, calorimeters, trigger
 - to complete/extend coverage and detector consolidation
 - to improve efficiencies and allow further rejection in high pileup conditions

Detector subsystems will be put under stress, in particular the Trigger system

- LHC Run 1 conditions:
- √s=900 GeV, 7 TeV, 8TeV
- Luminosity: up to 7x10³³ cm⁻² s⁻¹
- Pileup up to 35
- Integrated luminosity ~30 fb⁻¹

Expected LHC Run 2 conditions:

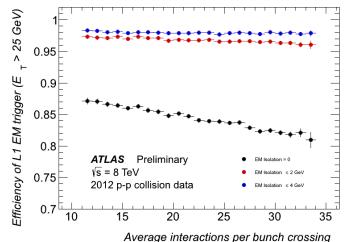
- √s=13 TeV
- Luminosity: up to 1.6x10³⁴ cm⁻² s⁻¹
- Pileup up to ~50
- Integrated luminosity ~150 fb⁻¹


Triggering at LHC in Run 1

□ ATLAS and CMS have a three-level trigger system

- Level-1: hardware-based, synchronous at 40MHz, with reduced detector granularity
- High Level Trigger: Level-2 and Level-3 software based
 - handles complexity with custom fast software, accessing the full resolution of all the detectors

Trigger challenges towards Run 2


- Simple extrapolation of rates from Run 1 to Run 2 will exceed trigger and DAQ resources available in Run 1
- Reduced rejection power of the algorithms due to pileup

- Trigger strategy for Run 2 in ATLAS:
 - 1) Efficient triggering over the full physics coverage
 - 2) Maintain sensitivity to Electroweak scale
 - Inclusive single lepton triggers (both electrons & muons)
 - Exclusive / multi-object triggers
 - Increased L1 and HLT output rate budget:
 - L1: nominal 75 kHz (Run 1) \rightarrow 100 kHz (Run 2): effort of the whole detector
 - HLT: 600 Hz (Run 1) \rightarrow 1 kHz (Run 2): need software improvements and speed up

Triggering on W/Z+jets in Run 2

- Standard Model physics of W and W+jets set tight constraints on trigger strategy
 - W cross section, W mass, W+c, W+b(b) etc.
- □ Compromise between high rates and efficient selection of W(+jets)
- □ Various options being debated within collaborations
 - Low-p_T lepton trigger threshold required for efficient selection (p_T~20-30 GeV)
 ⇒ High rates (∅(400 Hz) of W/Z->lv/II)
 - Tightening of lepton identification requirements (e.g. isolation of leptons from surrounding particles) to reject high-rate jet background and minimise increase of lepton trigger p_T threshold
 - Reduce acceptance of single lepton triggers (e.g. exclude high-rate high |η| regions)
 - Prescaling of single lepton triggers (reduction of statistics)
 - Additional requirements to single lepton threshold (e.g. missing E_T, M_T, jets, b-jets etc.)
 - \Rightarrow bias on kinematics and efficiency and acceptance losses

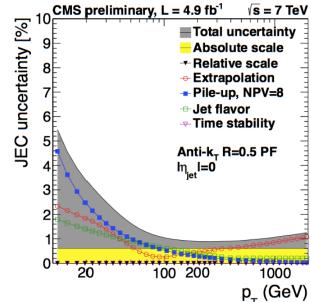
Conclusions

- Vector boson + jets is a thriving and fast moving field of research, at the basis of the hadron colliders programmes
 - deepens our knowledge of QCD and EW dynamics
 - improves modeling of backgrounds for searches
- □ Progress in understanding of W/Z+jets driven by both theory and experiments
- Theoretical predictions provide good description of data in many regions of phase space over many orders of magnitudes
- □ Latest results show that experimental uncertainties are often at the level or smaller than theoretical uncertainty
 - more and more data-theory discrepancies are not exposed
 - It is time re-tune the QCD models, e.g. MC generators and PDF fits, to improve theory reliability in preparation for Run 2
- Run 2 data will increase experimental sensitivity of W/Z+jets processes, and allow more measurements to be carried out
- □ The challenges of harsher LHC conditions are being met by experiments
 - Upgrade of trigger hardware and software
 - Re-optimisation of trigger selection

Looking forward to a Run 2 as successful as Run 1!

EXTRA SLIDES

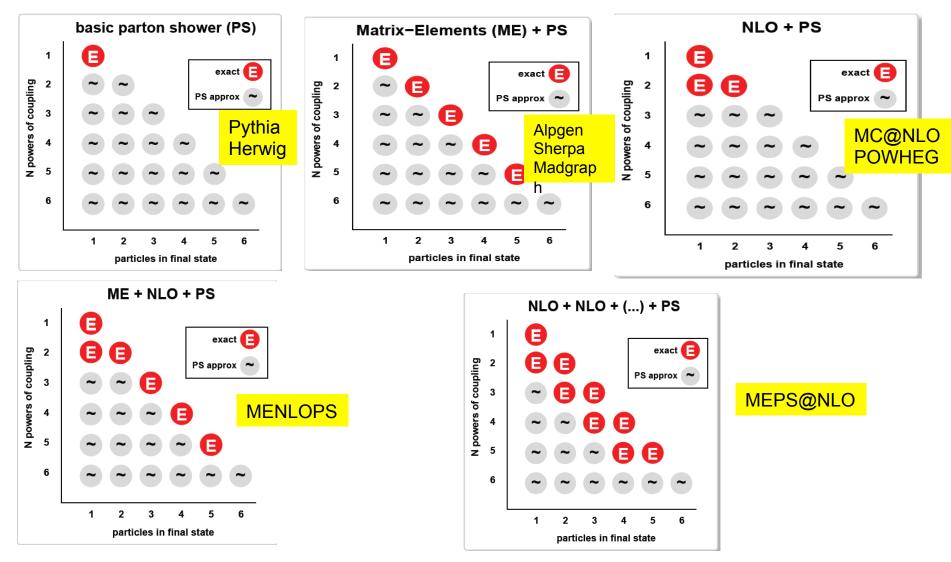
Jet Calibration


□ ATLAS: calorimeter-cluster based jets (topological clusters)

□ CMS: *particle flow* jets are most used

- Particles are reconstructed from all subdetectors information, and then clustered to form jets.
- Pileup correction on jet p_T
 - offset correction or jet area subtraction
- Jet calibrated based on MC jet p_T response, plus residual in-situ calibration
 - compensate for the non-linear response of the calorimeters vs p_T and variations of the response in η

- Several in-situ methods to cover large kinematic phase space
 - dijet η-intercalibration
 - γ+jet balance,
 - Z+jet balance
 - multijet balance



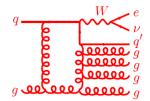
W+jets prediction accuracy

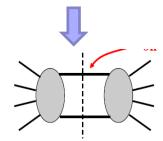
Program	Max. numb	Parton/Particle		
	approx. NNLO	NLO	LO	level
	$(\alpha_s^{N_{\text{jets}}+2})$	$(\alpha_s^{N_{jets}+1})$	$(\alpha_s^{N_{\rm jets}})$	
LoopSim	1	2	3	parton level
				with corrections
BLACKHAT+SHERPA	_	5	6	parton level
				with corrections
BLACKHAT+SHERPA	1	2	3	parton level
exclusive sums				with corrections
HEJ	all orders,	parton level		
	,	1		
MEPS@NLO	_	2	4	particle level
		_	_	•
ALPGEN	-	-	5	particle level
SHERPA	_	-	4	particle level

PS, ME+PS, NLO+PS

Theoretical Revolution – NLO

- Steep curve in achievements of NLO calculations in recent years thanks to a novel technique in pQFT calculations
- **G** Feynmann diagrams clumsy for high multiplicity processes
 - Origin of complexity is that vertices and propagators involve gauge-dependent off-shell states (p² ≠ m²)

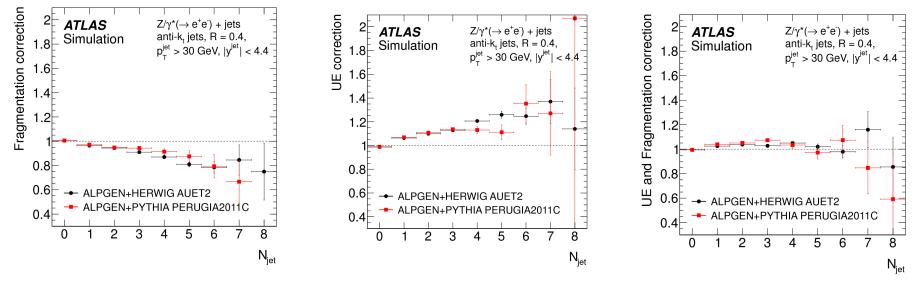

Recent years breakthrough based on Unitarity Principle


- Only gauge invariant on-shell quantities appear in intermediate step
- ⇒ On-shell formalism reduces problem to tree-like calculation
 - no more need for calculating hundreds of loop diagrams
- On-shell methods applied on variety of problems
 - N=4 Super Yan-Mills problems
 - UV properties of gravity

□ Main programs for Fixed Order NLO W/Z+jets:

- MCFM/Rocket
- Blackhat Z+4 jets and W+5 jets

• NB: Parton Level i.e. no hadronisation nor simulation of multi-parton interaction (underlying event)



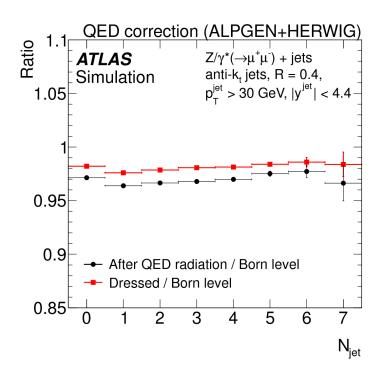
Non-perturbative corrections on parton-level pQCD Z+jets calculations at 7 TeV

❑ Non-perturbative contributions

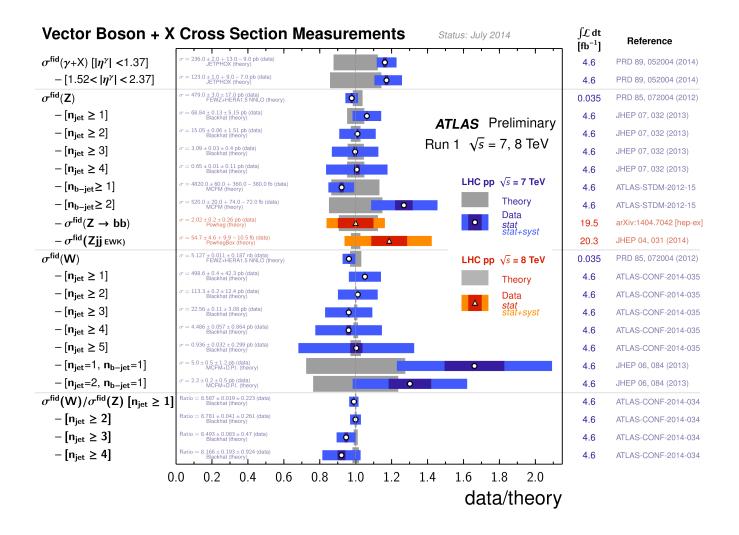
- UE: δ_{UE}
- Fragmentation: δ_{had}

$$\delta_{\rm UE} = \frac{\rm hadron\ level,\ UE\ on,\ born\ leptons}{\rm hadron\ level,\ UE\ off,\ born\ leptons}$$

$$\delta_{\rm had} = \frac{\rm hadron\ level,\ UE\ off,\ born\ leptons}{\rm parton\ level,\ UE\ off,\ born\ leptons}$$


Non-perturbative corrections mainly cancel: ~3%-4% correction

QED FSR corrections


on pQCD Z+jets calculations at 7 TeV

QED corrections:

- Born \rightarrow dressed (add γ in $\Delta R < 0.1$) : 1% per lepton
- Bare (after QED radiation) → Born (before QED radiation): 3% per lepton

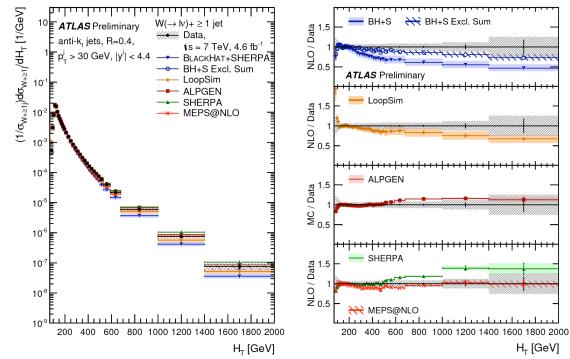
LHC Snapshot of V+jets

ATLAS W+jets at 7 TeV

Signal yield and background fractions

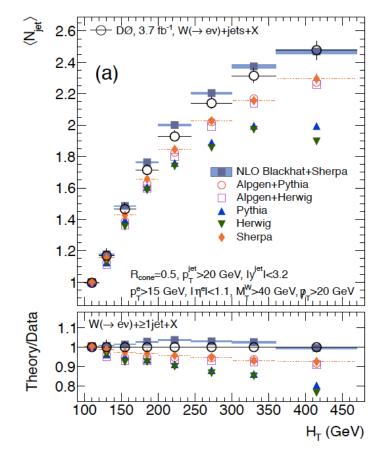
N _{jet}	0	1	2	3	4	5	6	7
	$W \rightarrow e \nu$							
$W \rightarrow e \nu$	94%	78%	74%	59%	37%	24%	14%	11%
Multijet	4%	11%	12%	11%	7%	6%	5%	4%
$t\bar{t}$	<1%	<1%	3%	18%	46%	63%	77%	81%
Single top	<1%	<1%	1%	2%	2%	2%	1%	1%
$W \rightarrow \tau \nu$, diboson	2%	3%	3%	3%	2%	1%	1%	1%
$Z \rightarrow ee$	<1%	8%	7%	7%	5%	4%	3%	3%
Total Predicted	11 100 000	1 510 000	352 000	88 300	27 700	8420	2510	567
	± 640000	± 99000	± 23000	± 5600	± 1400	± 430	± 200	± 61
Data Observed	10878398	1 548 000	361 957	91 212	28 076	8514	2358	618
	$W \rightarrow \mu \nu$							
$W \rightarrow \mu \nu$	93%	82%	79%	63%	40%	26%	17%	11%
Multijet	2%	11%	10%	10%	7%	5%	4%	3%
$t\bar{t}$	<1%	<1%	3%	20%	47%	65%	76%	84%
Single top	<1%	<1%	1%	2%	2%	2%	1%	1%
$W \rightarrow \tau \nu$, diboson	2%	3%	3%	3%	2%	1%	1%	<1%
$Z ightarrow \mu \mu$	3%	4%	3%	3%	2%	1%	1%	1%
Total Predicted	13 300 000	1 700 000	383 000	95 400	29 600	8860	2370	622
	± 770000	$\pm\ 100\ 000$	± 24000	± 5700	± 1300	± 420	± 180	± 66
Data Observed	13 414 400	1 758 239	403 146	99 749	30 400	9325	2637	663

ATLAS-CONF-2014-035


ATLAS:

Lepton $p_T>25$ GeV, $|\eta|<2.5$ Anti- k_T jets R=0.4, $p_T>30$ GeV, $|\gamma|<4.4$ $\Delta R(I,j) > 0.5$ Missing $E_T>25$ GeV, $M_T>40$ GeV

- used to discriminate SM from New Physics (e.g. SUSY)
- used to set scales in multi-scale processes (e.g. W/Z+jets)

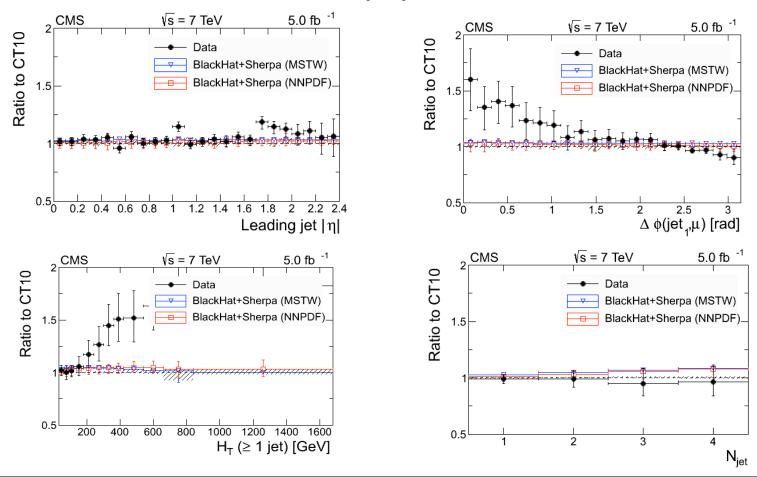


- **Discrepancies on H_T with NLO calculations (BlackHat)**:
 - Mean N_{iets} >2 at large H_T
 - Agreement improved on H_T with BlackHat by replacing NLO W+ \geq 1 jet with *exclusive sum*: W+ \geq 1 = (W+1) + (W+2) + (W+3) + (W+ \geq 4)
- \Box LO multileg generators over-predict H_T at high scales
- □ MEPS@NLO does very well up to high H_T

Tevatron results - W+jets

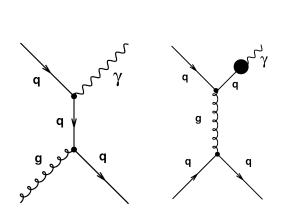
Phys. Rev. D 88 (2013) 092001

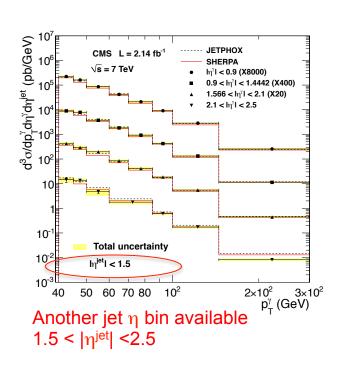
\Box H_T is important observable

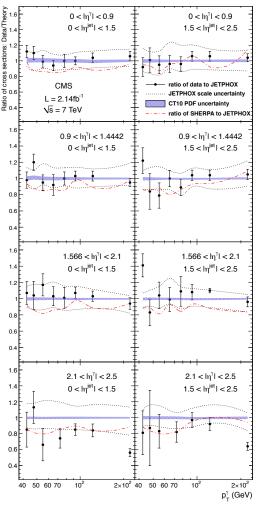

- used to discriminate SM from New Physics
- used to set scales in multi-scale processes

\Box Average number grows as function of H_T

- Exceeds 2 for H_T~250 GeV
- NLO pQCD calculation agrees with data over all H_T range
- LO M.E. + P.S. simulation underestimate <N_{jets}> at high H_T

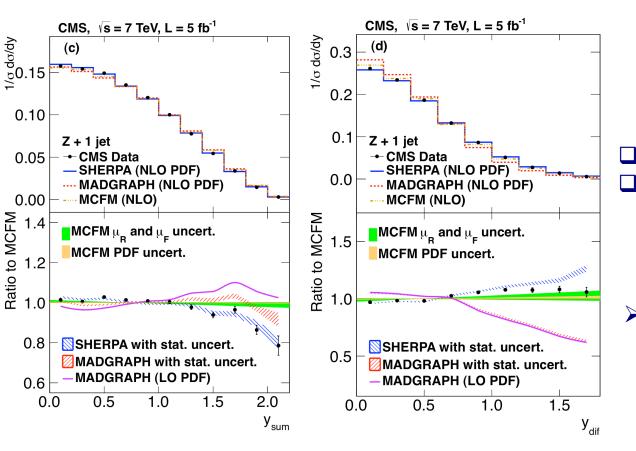

Angular distributions in W+jets at 7 TeV


PDF study by CMS



γ+jets at LHC at 7 TeV

Triple differential cross-section: γ p_T, γ rapidity and jet p_T
 Comparison with predictions by NLO pQCD (JETPHOX) and LO MC (Sherpa)



 Sherpa and JETPHOX are consistent with data except for cases of photons in the largest η and p_T regions

Phys. Rev. D 88 (2013) 112009

. . .

Ζ/γ+jets rapidity distributions at 7 TeV

$$y_{\text{sum}} = |y_V + y_{\text{jet}}|/2$$
$$y_{\text{dif}} = |y_V - y_{\text{jet}}|/2$$

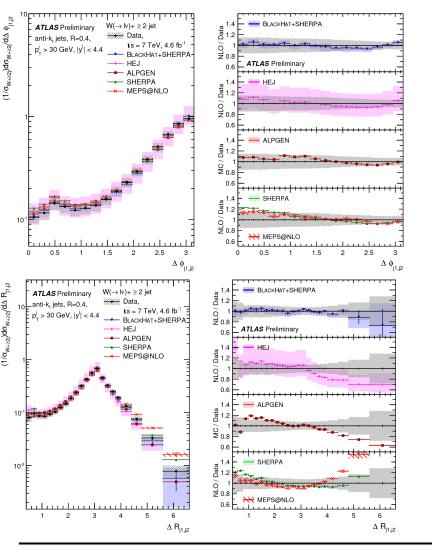
- y_{sum} sensitive to PDF y_{diff} sensitive to MC modeling of jet radiation
 - i.e. M.E.-P.S. matching
- Striking divergence of MADGRAPH predictions on y_{diff}

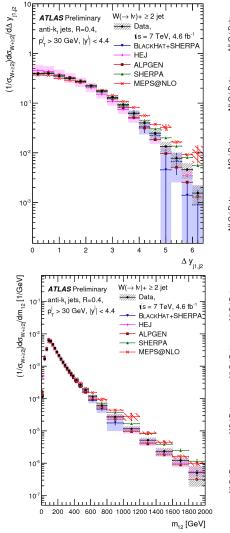
 \Box similar findings in same analysis with γ + jet events

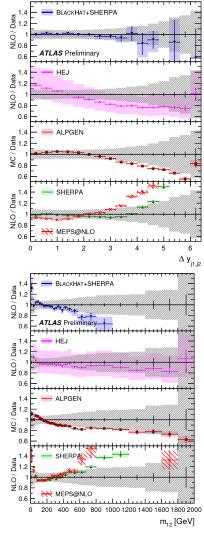
W/Z+jets at Tevatron and LHC

□ LHC is not a simple rescaling of Tevatron scattering

□ Probe different Bjorken-x, parton densities and processes

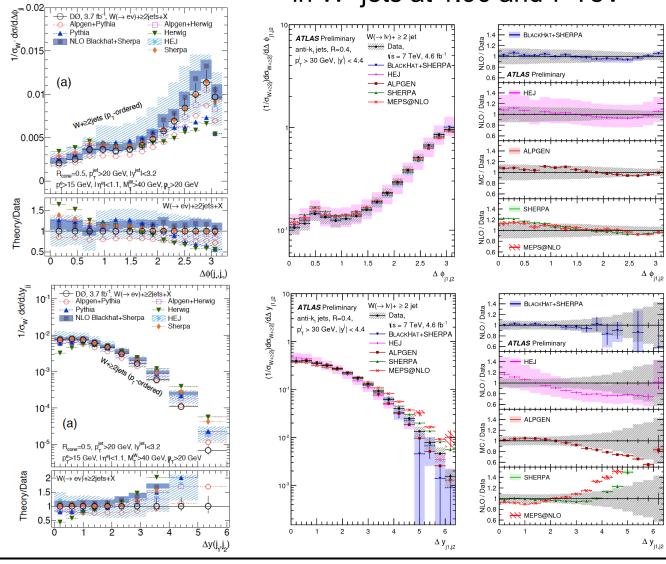

- Tevatron has significant valence quark contribution
- LHC has significant gluon and sea contribution
 - $\circ \ \mathbf{x}$ at Tevatron typically larger than at LHC
- Z+2jets: $qg \rightarrow Zqg$ fraction ~75% (LHC), ~25% (Tevatron)
- qq initiated processes relative smaller contribution at LHC than Tevatron (e.g. qq→Zbb vs gb →Zb)


□ LHC provided larger cross sections than Tevatron

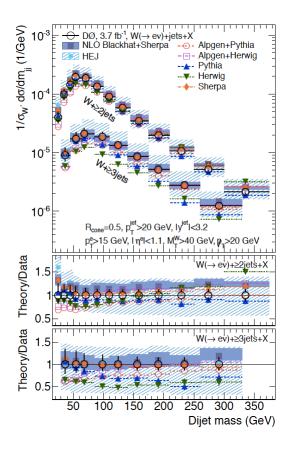

- W+4jets cross section at LHC 500x larger (with same kinematic cuts)
- Inclusive Zb cross section at LHC 50x larger [Phys. Rev. D 69, 074021]

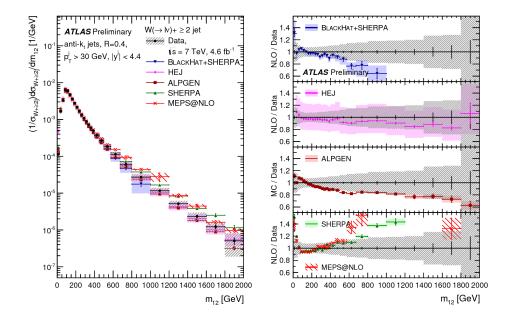
W+N-jets at LHC					
Ν	QQ (%)	Q (%) Qg (%)			
0	100	-	-		
1	18	18 82			
2	21	73	6		
3	23	70	7		
4	25	67	8		
arXiv:1004.3404					

Angular distributions and m_{jj} in W+jets at 7 TeV



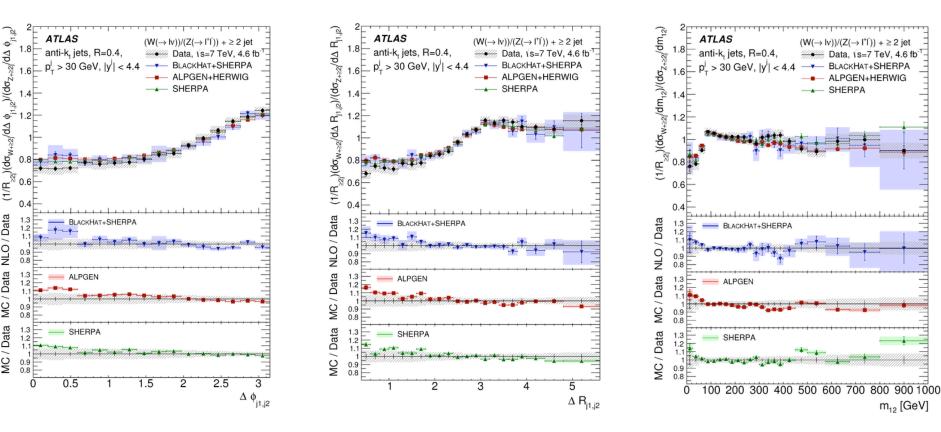
23rd September 2014

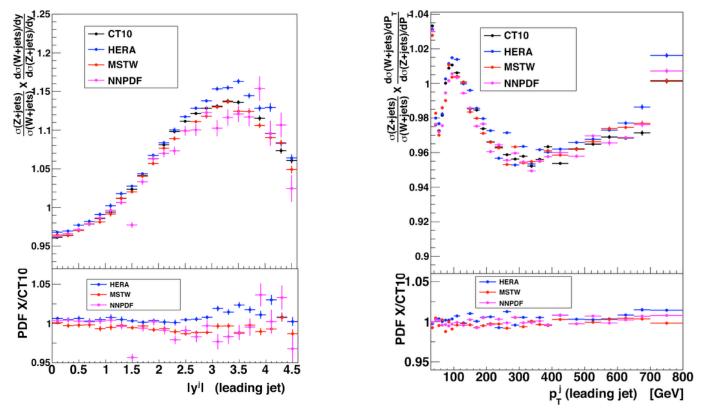

Angular distributions in W+jets at 1.96 and 7 TeV



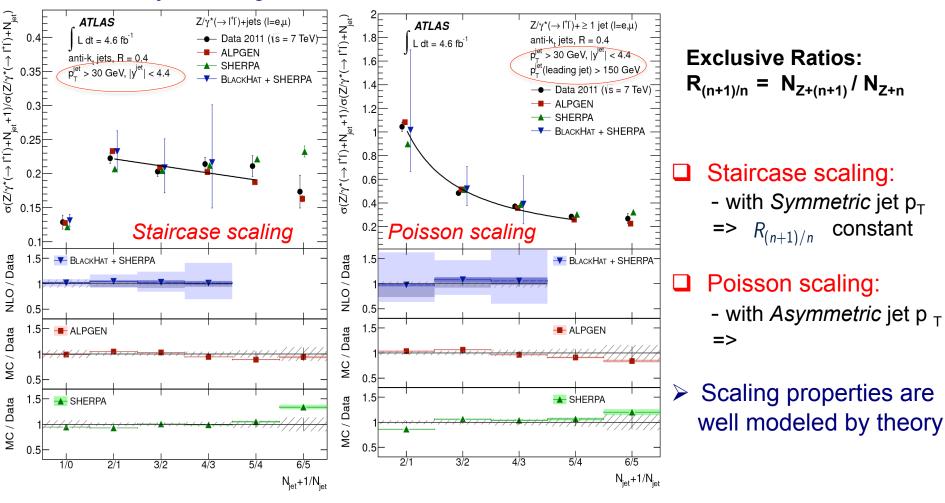
Similar discrepancies on angular distributions at Tevatron and LHC

 e.g. Sherpa and Alpgen mismodeling of Δφ(j1,j2)




- Smaller m_{jj} range at Tevatron than LHC Discrepancies seen at LHC are less evident at Tevatron

Angular distributions In Rjets at 7 TeV


PDF study by ATLAS

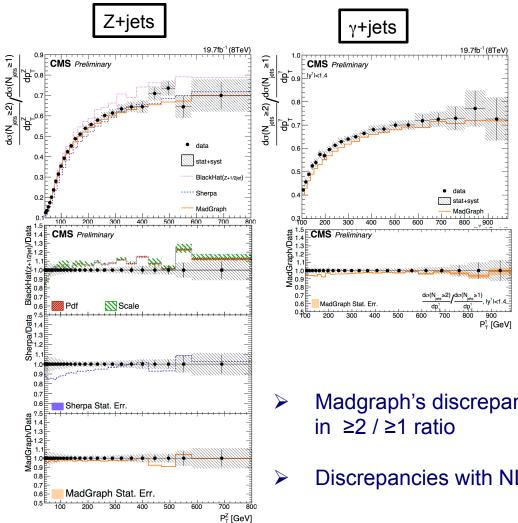
Experimental uncertainty still too large to be sensitive to PDF with Rjets

Z+jets at 7 TeV - Scaling

QCD scaling properties useful in analyses that employ jet vetoes to separate signal from W/Z+jets backgrounds

Z+jets - Scaling

- Poisson scaling (known in FSR QED at e+e- colliders) when large difference between the scale of the process Q and the radiation cut-off scale Q0.
 - For Q>>Q0 each emission is independent from the previous one (primary emission, i.e. off the hard parton leg)
 - For Q~Q0 emissions are correlated (secondary emissions, i.e. from newly produced quark line)


□ At hadron colliders:

- **1.** Poisson Scaling $(R_{(n+1)/n} = <n>/n+1 \leftarrow P_n = <n>^n e^{-<n>} / n!) Abelian$
 - With asymmetric selection, with hierarchy of jet scales
 - Large difference between the core-process scale and the jet acceptance cut
 - 1st jet pT >150 GeV, all other jet pT>30 GeV, in Exclusive Ratios only
 - At large N_{jets} Staircase will dominate
- 2. Staircase Scaling ($R_{(n+1)/n} = R = e^{-b} \leftarrow \sigma_n = \sigma_0 e^{-bn}$) Non-Abelian
 - With democratic jet selection and no major scale separations
 - E.g. All jet pT>30 GeV, in Exclusive and Inclusive Ratios
 - R_{1/0} suppressed by PDF (by 60%), otherwise would be very large value

jet rates in γ/Z+jets at 8 TeV

CMS-PAS-SMP-14-005

Lepton $p_T>20 \text{ geV } |\eta|<2.4$ V-boson $p_T>100 \text{ GeV}$ γ -boson $|\gamma| < 1.4$ antiKt5 jet $p_T>30 \text{ GeV}$, $|\eta|<2.4$ $\Delta R(l,j) > 0.5$

\Box Inclusive 2-over-1 ratio vs boson p_T

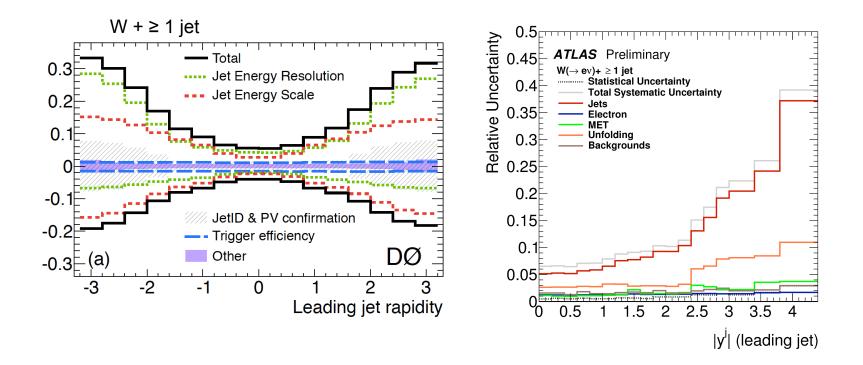
Systematics correlated in ratio

- BlackHat for Z+1,2,3 Partons
- Particle-level comparison with LO ME
 Z +≤4 jets
 - Magraph+Pythia6, Sherpa

Madgraph's discrepancies in $N_{jets} \ge 1$ and ≥ 2 jet samples cancel in $\ge 2 / \ge 1$ ratio

Discrepancies with NLO and Sherpa by ~ ±10%

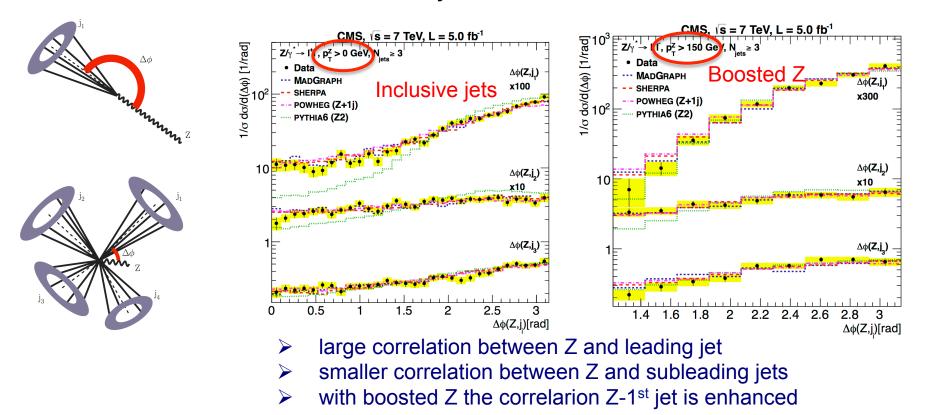
PRD 88 (2013) 092001


D0:

electron p_T >15 GeV $|\eta|<1.1$ Missing $E_T > 20$ GeV, $M_T>40$ GeV Midpoint R=0.5, Jet $p_T > 20$ GeV, |y|<3.2 ΔR (ele, jet)>0.5 ATLAS:

Lepton $p_T>25$ GeV, $|\eta|<2.5$ Anti- k_T jets R=0.4, $p_T>30$ GeV, |y|<4.4 $\Delta R(I,j) > 0.5$ Missing $E_T>25$ GeV, $M_T>40$ GeV

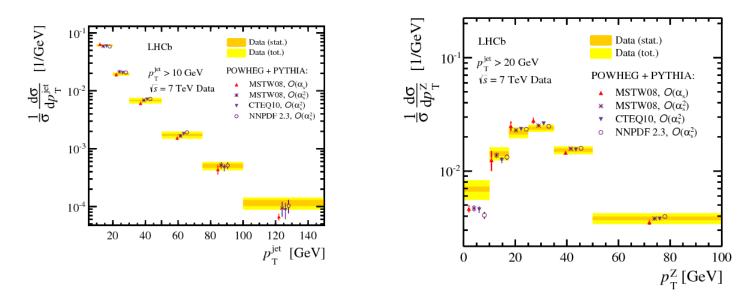
Tevatron vs LHC uncertainties


W+jets

Matrix Element vs Parton shower

Azimuthal Correlations

In Z+jets at 7 TeV

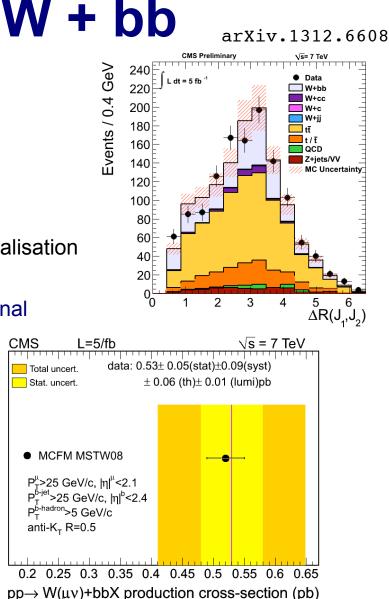

Boosted Z topology important as background for searches with missing ET

- Good modeling by LO multi-leg (Sherpa, MadGraph) and NLO Z+1 (Powheg) generators
- ▶ PS prediction (Pythia6) at small $\Delta \phi$ better modeling at high Z p_T

PDF sensitivity in Z+jets at 7 TeV with LHCb

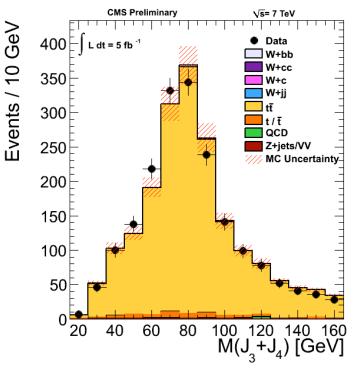
Forward Z+jets study with LHCb detector, muons from Z decay and jets in 2.0< |η| <4.5 with 1fb⁻¹

- Two jet selections: jet p_T >10, 20 GeV, with anti-kt R=0.5 and $\Delta R(\mu, jet)$ >0.4
- MC generator and PDF studies

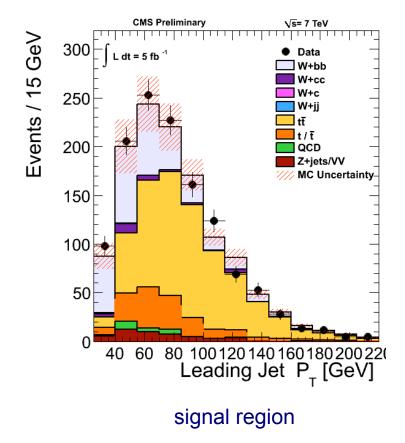

NLO PDF agree better with data than LO

e.g. Z p_T and jet p_T spectra are steeper for LO than NLO and data

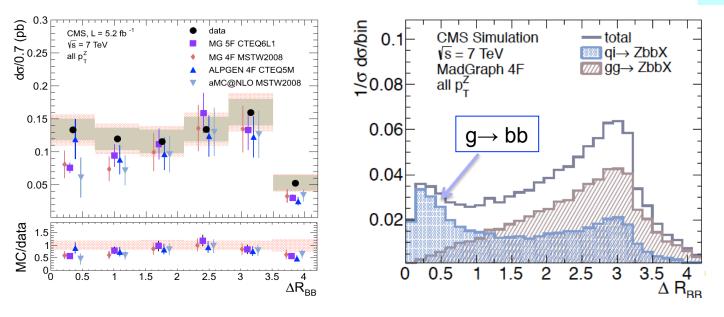
CMS – muon channel only


- $p_{T \mu} > 25 \text{ GeV}, |\eta_{\mu}| < 2.1$
- AntikT5, Jet p_T > 25 GeV, | η | < 2.4
- m_T > 45 GeV
- Exactly two b-jets
- W+bb probes gluon splitting into b-quark pair
- □ Analysis reconstructs 2 well-separated b-jets
- Top-quark pair is largest background
 - Top control samples used to constrain bkg normalisation
- Simultaneous fit of W+bb and ttbar background in signal (p_T ^{J1}) and control region (m_{j3,j4})
 CMS

agreement data and NLO prediction


CMS – muon channel only

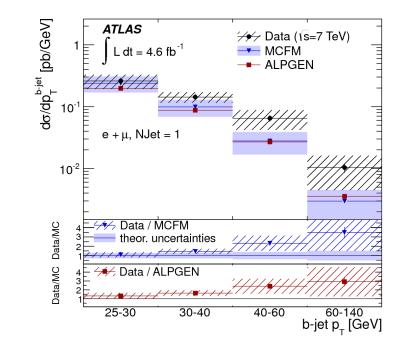
- p_{T μ} > 25 GeV, |η_μ| < 2.1
- AntikT5, Jet p_T > 25 GeV, |η| < 2.4
- m_T > 45 GeV
- Exactly two b-jets

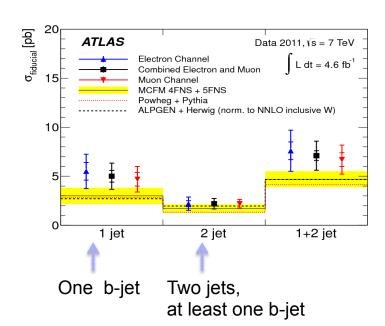

ttbar control region: 2 jets in addition to the 2 b-tagged jets

Z + BB

Z+BB Fiducial phase space: b-hadron p_T >15 GeV, $|\eta|$ <2 Lepton p_T >20 GeV $|\eta|$ <2.4 81< M_{II}<101 GeV

- MG4 scaled to NNLO Z cross-section (x1.23)
- MG5 and ALPGEN scaled to aMC@NLO cross-section
- Theory uncertainties:
 - b-quark mass (MG4)
 - o renorm., fact. Scales
 - matching scale
 - normalisation uncertainties
 - parton shower Herwig vs Pythia (aMC@NLO)

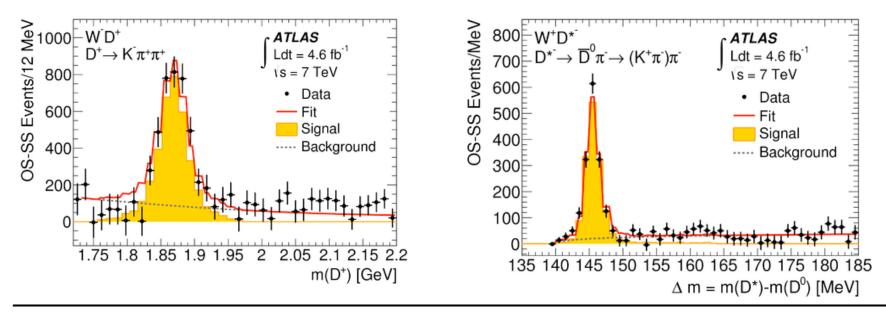

- b-hadron pair identification efficiency: 8-10%
- ttbar bkg ~30% subtracted after fit to M_{II} distribution
- 3-track requirement on secondary vertex is most effective at cutting Zcc bkg


W + b

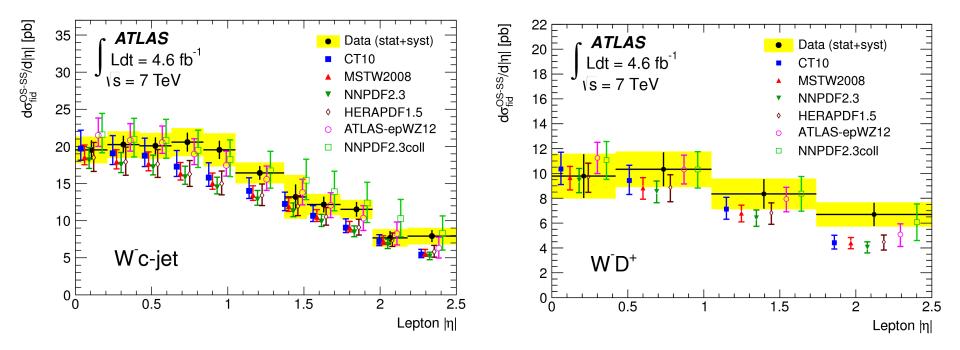
- $p_{T\,\mu},\,p_{T\,e}>25$ GeV, $|\eta|<2.47$ (e), 2.4 (μ) AntikT4, Jet $p_{T}>25$ GeV, |y|<2.1
- E_{Tmiss} > 25 GeV, m_T > 60 GeV
- Only one b-jet

\succ Theory underestimate the data in the 1 jet bin

- Predictions at NLO (MCFM, Powheg) and LO (**Alpgen**)
 - MCFM corrected for hadronisation
 - MCFM and Powheg are corrected for DPI
- \blacktriangleright Data about 1.5 σ above predictions
 - Disagreement larger at high b-jet p_{T}

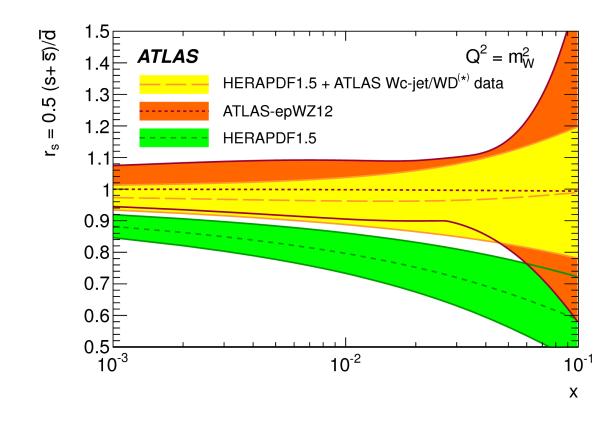

ATLAS W + c

D-mesons reconstructed in Inner Detector


- no jet reconstruction
- 3 or more jets vetoed to reduce top background

□ Fit OS-SS distributions of m(K $\pi\pi$) for D^{+/-} and $\Delta m = m(D^*) - m(D^0)$

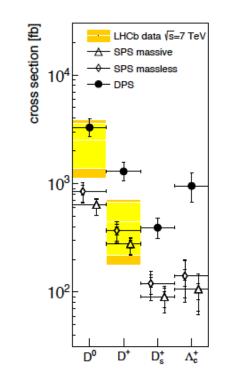
Largest background W+jets (smaller contribution from semi-leptonic cc,bb events)



ATLAS W + c

NNPDF2.3coll in better agreement with data

W + c

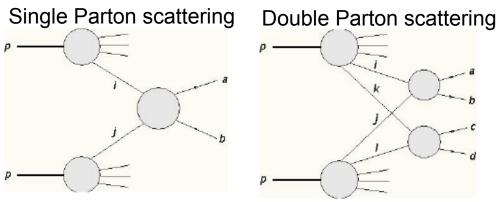

□ Fit s-quark PDF with HERA data including ATLAS W+c data

Z + D at LHCb

- □ LHCb: exclusive reconstruction of $Z(\rightarrow \mu\mu)+D^{0,+}$
 - 7 events in Z+D⁰, 4 events in Z+D⁺

 $p_{\rm T}(\mu^{\pm}) > 20 \,{
m GeV}, \ 2 < \eta(\mu^{\pm}) < 4.5 \ 2 < p_{\rm T}({
m D}) < 12 \,{
m GeV} \ {
m and} \ 2 < y({
m D}) < 4$

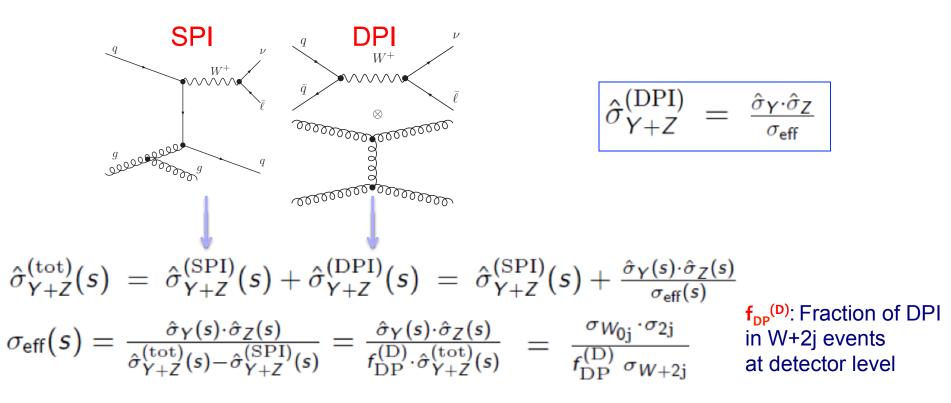
- Z+D provides information about
 - charm PDF
 - charm production mechanism
 - double parton scattering
- Z+D found by D0 Coll. in disagreement with NLO pQCD calculations
- Measurement compared to Single Parton Scattering and Double parton scattering predictions
 - Data-predictions agreement for Z+D⁰
 - Data lies below expectations for Z+D⁺



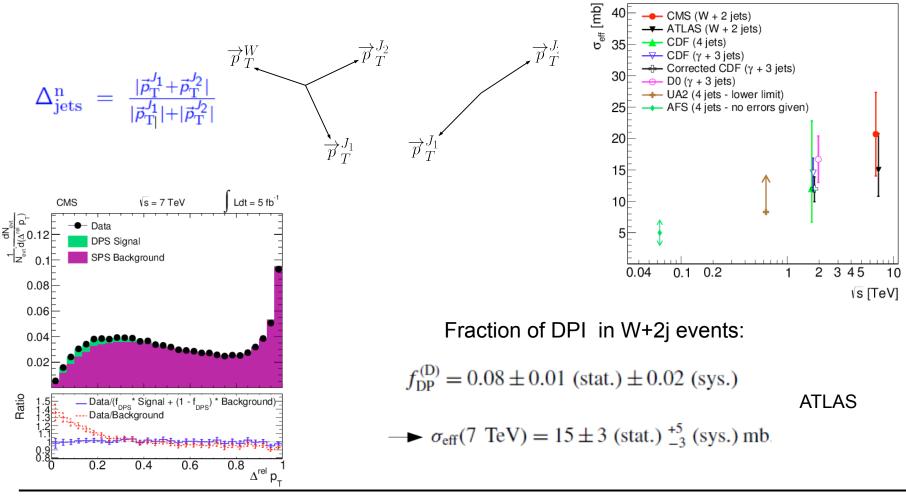
 $D^0 \rightarrow K^- \pi^+$

 $D^+ \rightarrow K^- \pi^+\pi^+$

The measured cross-section is expected to be the sum of SPS and DPS (MCFM).


Experimental Results - MPI

- □ Independent scatterings in a pp collision
- Multi Parton Interactions necessary ingredient of simulations
 - Description of particle multiplicities and energy flow
- Important contribution to precision measurements (e.g. Higgs, WW) and new physics searches
- □ Higher \sqrt{s} and Luminosity implies bigger impact of DPI and at higher p_T □ Rapid increase in MPI with rising \sqrt{s}
 - Number of small-x partons increases dramatically
- ➢ Non negligible (~10%) at low x (< 0.2) at LHC energies</p>
- Difficult to measure as buried in other signal
 - Co-exists with ISR, FSR, beam remnants and the hard interaction (pileup makes all of this far worse)


Experimental Results - MPI

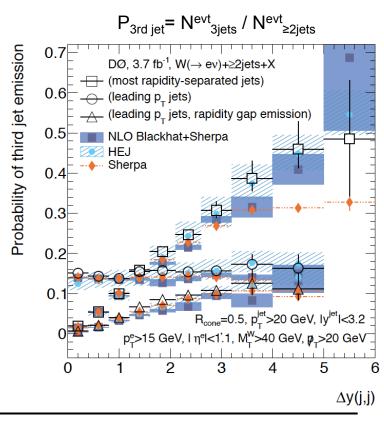
- Double Parton Interactions are characterised by the effective area parameter σ_{eff}
 - assumed to be independent of phase space and process
- Large Uncertainties from previous measurements:
 - 5mb at low energies up to 15mb at Tevatron energies

Experimental Results – MPI

Fraction of DPI events in W+2jets data extracted from template fit to normalized transverse momentum balance

Tevatron

electron p_T >15 GeV $|\eta|$ <1.1 Missing E_T > 20 GeV, M_T >40 GeV Midpoint R=0.5, Jet p_T > 20 GeV, |y|<3.2 Δ R(ele, jet)>0.5

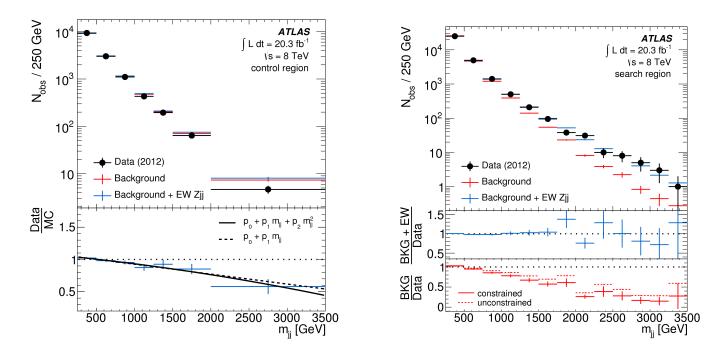

□ Study of 3^{rd} jet emission probability in W + ≥ 2jets vs rapidity separation between jets $\Delta y(j,j)$

- Δy(j_F, j_R): two most-rapidity-separated jets in W + ≥2j events
- $\Delta y(j_1, j_2)$: two highest-p_T jets in W + ≥2j events
- $\Delta y(j_1, j_2)$: two highest-p_T jets with 3rd jet in j_1 - j_2 y-gap in W + $\geq 2j$ events

Laboratory for rapidity gaps, central jet vetoes and VBF jet dynamics

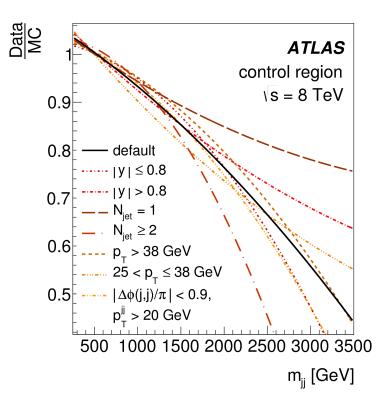
- Test of high-p_T jet emission
- Test of wide-angle gluon emission
- Complementary to studies in dijet events
- Weak (*strong*) dependence of 3rd jet emission probability vs jet rapidity separation in p_T-ordered (*rapidity-ordered*) configuration
 - Competing effects of increasing phase space for jet emission and decreasing PDF at at large x

HEJ (resummation) describes best the data in all configurations



Breakdown of the electroweak cross section systematics

Source	$\Delta N_{ m EW}$		$\Delta C_{\rm EW}$	
	Electrons	Muons	Electrons	Muons
Lepton systematics			$\pm 3.2~\%$	$\pm 2.5\%$
Control region statistics	$\pm 8.9~\%$	$\pm 11.2~\%$		
JES	$\pm 5.6~\%$		$^{+2.7}_{-3.4}$ %	
JER	$\pm 0.4~\%$		$\pm 0.8~\%$	
Pileup jet modelling	$\pm 0.3~\%$		$\pm 0.3~\%$	
JVF	± 1.1 %		$^{+0.4}_{-1.0}$ %	
Signal modelling	$\pm 8.9~\%$		$^{+0.6}_{-1.0}$ $\%$	
Background modelling	$\pm 7.5~\%$			
Signal/background interference	$\pm 6.2~\%$			
PDF	$^{+1.5}_{-3.9}$ %		$\pm 0.1~\%$	


□ EW Zjj component extracted by a fit to the mjj spectrum
 □ Strong Zjj production constrained from events with ≥1 jet within tag jets

- correct simulation in search region using data/MC ratio in control region
- improves the modelling by Sherpa and limits systematic uncertainties

Correction derived from Sherpa

- Choice of generator checked by using POWHEG (instead of SHERPA) and repeating full analysis chain
 - Extracted signal yields agree to 0.8%
- Choice of control region validated by splitting it into 7 sub-regions
 - deriving new constraints,
 - repeating full analysis chain
 - extracted signal yields agree within 5%
 - background modelling at high mjj region has small impact on the extracted number of electroweak Zjj events

Process composition in each fiducial region

	Composition $(\%)$					
Process	baseline	$high$ - p_{T}	search	control	high-mass	
Strong Zjj	95.8	94.0	94.7	96.0	85	
Electroweak Zjj	1.1	2.1	4.0	1.4	12	
WZ and ZZ	1.0	1.3	0.7	1.4	1	
$t\bar{t}$	1.8	2.2	0.6	1.0	2	
Single top	0.1	0.1	< 0.1	< 0.1	< 0.1	
Multijet	0.1	0.2	< 0.1	0.2	< 0.1	
WW, W+jets	< 0.1	< 0.1	< 0.1	< 1.1	< 0.1	

Charged aTGCs: World Summary

Feb 2013

 			
			ATLAS Limits CMS Limits D0 Limit LEP Limit
Δκ	H	WW	-0.043 - 0.043 4.6 fb ⁻¹
$\Delta \kappa_{Z}$		WV	-0.043 - 0.033 5.0 fb ⁻¹
	⊢●┥	LEP Combination	-0.074 - 0.051 0.7 fb ⁻¹
λ	⊢	WW	-0.062 - 0.059 4.6 fb ⁻¹
Λ _Z	⊢I	WW	-0.048 - 0.048 4.9 fb ⁻¹
	F	WZ	-0.046 - 0.047 4.6 fb ⁻¹
	н	WV	-0.038 - 0.030 5.0 fb ⁻¹
	Ю	D0 Combination	-0.036 - 0.044 8.6 fb ⁻¹
	H	LEP Combination	-0.059 - 0.017 0.7 fb ⁻¹
Δα ^Z	\vdash	WW	-0.039 - 0.052 4.6 fb ⁻¹
∆9 ₁	┝───┥	WW	-0.095 - 0.095 4.9 fb ⁻¹
	⊢ −−1	WZ	-0.057 - 0.093 4.6 fb ⁻¹
	$\vdash \circ \dashv$	D0 Combination	-0.034 - 0.084 8.6 fb ⁻¹
	H	LEP Combination	-0.054 - 0.021 0.7 fb ⁻¹
-0.5	0	0.5 1	1.5
		aTGC L	imits @95% C.L

LHC detector upgrades

CMS

LS1

- Complete Muon coverage
- Replace HCAL photo-detectors in Forward and Outer

□ LS2 :

- New 4-layer Pixel detector
 - improves tracking eff. with lower fake rate
- L1-Trigger upgrade
 - allows much improved algorithm for PU mitigation
- HCAL electronics

LS3, considered upgrade

- Replace detectors due to radiation damage
 - $\circ~$ Pixel, strip and endcap calorimeters
- Enhanced coverage up to η=4
 - Forward: tracker, calorimeter and muon detectors
- Track trigger

LS1

- New beam pipe
- New Insertable pixel b-layer and pixel services

ATLAS

- Complete installation of muon chambers
- L1 Topological triggers

LS2

- New Small Wheel for the forward muon Spectrometer
- Trigger upgrade
 - Higher granularity Calorimeter L1-Trigger
 - Fast TracKing for L2-Trigger

□ LS3, considered upgrade

- New tracking detectors
- Calorimeter electronics and muon system upgrades
- Two stage L0/L1 system from the present L1-Trigger

Trigger strategy for Run 2

Run 1			Run 2		
Offline $p_{\rm T}$				Offline $p_{\rm T}$	
	Threshold	Rate		Threshold	Rate
	[GeV]	[kHz]		[GeV]	[kHz]
EM18VH	25	130	EM30VHI	38	14
EM30	37	61	EM80	100	2.5
2EM10	2x17	168	2EM15VHI	2x22	2.9
EM total		270			18
MU15	25	150	MU20	25	28
2MU10	23 2x12	130	2MU11	23 2x12	4.0
Muon total	2X12	14 164	2101011	2X12	4.0 32
EM10VH_MU6	17,6	22	EM15VH_MU10	22,12	3.0
			EM10H_2MU6	17,2x6	2.5
TAU40	100	52	TAU80V	180	4.7
1110 10	100		2TAU50V	2x110	3.8
2TAU11I_TAU15	30,40	147	2TAU20VI_3J20	2x50,60	5.2
2TAU11I_EM14VH	30,21	60	2TAU20VI		
	,		EM18VHI_3J18	50,25,60	2.8
			TAU15VI_MU15	40,20	3.8
TAU15_XE35	40,80	63	TAU20VI	,	
_			XE40_3J20	50,90,60	4.4
Tau total		238			20
[75	200	34	J100	200	7.0
4J15	200 4x55	34 87	4J25	200 4x60	3.3
-1)10	7700	07	J75_XE40	150,150	8.3
XE40	120	157	XE90	250	0.5 10
Jet/ E_{T}^{miss} total ^a	120	306		200	25
jean total		500			20
Topological triggers		-			${\sim}5$
Total		$\sim \! 800$			\sim 100

ATLAS:

Rates extrapolated to luminosity of 3x10³⁴ cm⁻² s⁻¹