Decays of the SM-like Higgs boson in the Georgi-Machacek model

Heather Logan
Carleton University
Ottawa, Canada

LHC HXSWG, BRs subgroup
October 8, 2014

Motivation for isospin ≥ 1

Consider the $h W W$ coupling:
$-\mathrm{SM}: i \frac{g^{2} v}{2} g_{\mu \nu}(v \simeq 246 \mathrm{GeV})$

- 2HDM: $i \frac{g^{2} v}{2} g_{\mu \nu} \sin (\beta-\alpha)$

- SM + singlet: $i \frac{g^{2} v}{2} g_{\mu \nu} \cos \alpha(h=\phi \cos \alpha-s \sin \alpha)$

Extended Higgs sector with isospin doublets or singlets always have $h V V$ couplings less than or equal to those in the SM.

- $\mathrm{SM}+$ some multiplet $X: i \frac{g^{2} v_{X}}{2} g_{\mu \nu} \cdot 2\left[T(T+1)-\frac{Y^{2}}{4}\right] \quad\left(Q=T^{3}+Y / 2\right)$

The only way to enhance the $h W W$ coupling above its SM value is through a scalar with isospin ≥ 1 that has a non-negligible vev and mixes into the observed Higgs $h . \Rightarrow$ triplets benchmark

Motivation for isospin ≥ 1

Enhancement of (all) the h couplings is also interesting because it can hide a non-SM contribution to the Higgs BRs.

LHC measures rates in particular final states:

$$
\text { Rate }=\frac{\sigma_{\mathrm{SM}} \Gamma_{\mathrm{SM}}}{\Gamma_{\mathrm{SM}}^{\text {tot }}} \rightarrow \frac{\kappa^{2} \sigma_{\mathrm{SM}} \cdot \kappa^{2} \Gamma_{\mathrm{SM}}}{\kappa^{2} \Gamma_{\mathrm{SM}}^{\text {tot }}+\Gamma_{\text {new }}}
$$

Rates are identical to SM Higgs predictions if

$$
\kappa^{2}=\frac{1}{1-B R_{\text {new }}}
$$

Constraint on $\Gamma^{\text {tot }}$ (equivalently on κ) from off-shell $g g\left(\rightarrow h^{*}\right) \rightarrow Z Z$ assumes no new resonances in s-channel: rather model-dependent.

To study this further, nice to have a concrete model \Rightarrow e.g., can study effect of heavy H^{0} resonance on off-shell $g g\left(\rightarrow h^{*}\right) \rightarrow Z Z$.

Problem with isospin ≥ 1 : the ρ parameter

$\rho \equiv$ ratio of strengths of charged and neutral weak currents $\simeq 1$ to high precision.

$$
\rho=\frac{M_{W}^{2}}{M_{Z}^{2} \cos \theta_{W}}=\frac{\sum_{k} 2\left[T_{k}\left(T_{k}+1\right)-Y_{k}^{2} / 4\right] v_{k}^{2}}{\sum_{k} Y_{k}^{2} v_{k}^{2}}
$$

($Q=T^{3}+Y / 2$, vevs defined as $\left\langle\phi_{k}^{0}\right\rangle=v_{k} / \sqrt{2}$ for complex reps and $\left\langle\phi_{k}^{0}\right\rangle=v_{k}$ for real reps)
$\rho=1$ "by accident" for SM doublet. also for isospin septet with $Y=4$ (septet: Hisano \& Tsumura, 1301.6455; Kanemura, Kikuchi \& Yagyu, 1301.7303)

SM + real triplet $\xi(Y=0): \rho>1$

SM + complex triplet $\chi(Y=2): \rho<1$

Combine them both: $\left\langle\chi^{0}\right\rangle=v_{\chi},\left\langle\xi^{0}\right\rangle=v_{\xi} ;$ doublet $\left\langle\phi^{0}\right\rangle=v_{\phi} / \sqrt{2}$

$$
\rho=\frac{v_{\phi}^{2}+4 v_{\xi}^{2}+4 v_{\chi}^{2}}{v_{\phi}^{2}+8 v_{\chi}^{2}}=1 \text { when } v_{\xi}=v_{\chi}
$$

Enforce $v_{\xi}=v_{\chi}$ using a symmetry.
Assemble the real + complex triplets into a bitriplet (analogous to the SM Higgs bidoublet) under global $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$:

$$
\Phi=\left(\begin{array}{cc}
\phi^{0 *} & \phi^{+} \\
-\phi^{+*} & \phi^{0}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

Vevs: (preserves the diagonal $\operatorname{SU}(2)_{c}$ "custodial" subgroup)

$$
\langle\Phi\rangle=\frac{v_{\phi}}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\langle X\rangle=v_{\chi}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

W and Z boson masses constrain the combination of vevs:

$$
v_{\phi}^{2}+8 v_{\chi}^{2} \equiv v^{2} \simeq(246 \mathrm{GeV})^{2}
$$

Gauging hypercharge breaks the $\mathrm{SU}(2)_{R}$: divergent radiative correction to ρ at 1-loop (need a relatively low cutoff scale)

Gunion, Vega \& Wudka, PRD43, 2322 (1991)

Physical spectrum: Custodial symmetry fixes almost everything!

Bidoublet: $2 \times 2 \rightarrow 3+1$
Bitriplet: $3 \times 3 \rightarrow 5+3+1$

Custodial 5-plet ($H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}$), common mass m_{5} $H_{5}^{++}=\chi^{++}, H_{5}^{+}=\left(\chi^{+}-\xi^{+}\right) / \sqrt{2}, H_{5}^{0}=\sqrt{2 / 3} \xi^{0}-\sqrt{1 / 3} \chi^{0, r}$

Custodial triplet $\left(H_{3}^{+}, H_{3}^{0}, H_{3}^{-}\right)$, common mass m_{3} $H_{3}^{+}=-\sin \theta_{H} \phi^{+}+\cos \theta_{H}\left(\chi^{+}+\xi^{+}\right) / \sqrt{2}, H_{3}^{0}=-\sin \theta_{H} \phi^{0, i}+\cos \theta_{H} \chi^{0, i} ; \tan \theta_{H}=2 \sqrt{2} v_{\chi} / v_{\phi}$ (orthogonal triplet is the Goldstones)

Two custodial singlets h^{0}, H^{0}, masses m_{h}, m_{H}, mixing angle α

$$
\begin{aligned}
h^{0} & =\cos \alpha \phi^{0, r}-\sin \alpha\left(\sqrt{1 / 3} \xi^{0}+\sqrt{2 / 3} \chi^{0, r}\right) \\
H^{0} & =\sin \alpha \phi^{0, r}+\cos \alpha\left(\sqrt{1 / 3} \xi^{0}+\sqrt{2 / 3} \chi^{0, r}\right)
\end{aligned}
$$

$$
\begin{aligned}
V(\Phi, X)= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2} \\
& +\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right) \\
& +\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b}
\end{aligned}
$$

9 parameters, 2 fixed by M_{W} and $m_{h} \rightarrow$ free parameters are $m_{H}, m_{3}, m_{5}, v_{\chi}, \alpha$ plus two triple-scalar couplings.

Dimension-3 terms usually omitted by imposing Z_{2} sym. on X. These dim-3 terms are essential for the model to possess a decoupling limit!
$\left(U X U^{\dagger}\right)_{a b}$ is just the matrix X in the Cartesian basis of $\operatorname{SU}(2)$, found using

$$
U=\left(\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
-\frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\
0 & 1 & 0^{2}
\end{array}\right)
$$

Theory constraints

Perturbative unitarity: impose $\left|\operatorname{Re} a_{0}\right|<1 / 2$ on eigenvalues of coupled-channel matrix of $2 \rightarrow 2$ scalar scattering processes. Constrain ranges of λ_{1-5}.

Aoki \& Kanemura, 0712.4053

Bounded-from-belowness of the scalar potential: consider all combinations of fields nonzero. Further constraints on λ_{1-5}.

Hartling, Kumar \& HEL, 1404.2640

Absence of deeper custodial $\operatorname{SU}(2)$-breaking minima: numerical check that desired minimum is the deepest (1-dim scan over finite parameter range). Constraints involve all 9 parameters.

Hartling, Kumar \& HEL, 1404.2640
(we do not consider situations in which the desired vacuum is metastable)

Indirect constraints: $R_{b}, b \rightarrow s \gamma$, etc.
Key observations: $\left(\tan \theta_{H}=2 \sqrt{2} v_{\chi} / v_{\phi}\right)$

1) Fermion masses generated by a single $\mathrm{SU}(2)_{L}$ Higgs doublet.

$$
\begin{array}{rlll}
h \bar{f} f: & -i \frac{m_{f}}{v} \frac{\cos \alpha}{\cos \theta_{H}}, & H \bar{f} f: & -i \frac{m_{f}}{v} \frac{\sin \alpha}{\cos \theta_{H}}, \\
H_{3}^{0} \bar{u} u: & \frac{m_{u}}{v} \tan \theta_{H} \gamma_{5}, & H_{3}^{0} \bar{d} d: & -\frac{m_{d}}{v} \tan \theta_{H} \gamma_{5}, \\
H_{3}^{+} \bar{u} d: & -i \frac{\sqrt{2}}{v} V_{u d} \tan \theta_{H}\left(m_{u} P_{L}-m_{d} P_{R}\right), \\
H_{3}^{+} \bar{\nu} \ell: & i \frac{\sqrt{2}}{v} \tan \theta_{H} m_{\ell} P_{R} & \text { (all } \left.H_{5} f \bar{f} \text { couplings }=0\right)
\end{array}
$$

(b, τ Yukawas not enhanced: nonoblique/b-phys effects involve couplings $\sim m_{t} \tan \theta_{H}$)
2) $H_{3}^{+} H_{3}^{-} Z$ coupling is identical to $H^{+} H^{-} Z$ coupling in 2 HDMs due to custodial symmetry.
\Rightarrow Leading nonoblique Z-pole and b-physics constraints are the same as those in the Type-I 2HDM, with $\cot \beta \rightarrow \tan \theta_{H}$ and $m_{H^{+}} \rightarrow m_{3}$! These constrain the $m_{3}-v_{\chi}$ plane.

Indirect constraints: $R_{b}, b \rightarrow s \gamma$, etc.
R_{b} : known a long time in GM model; same form as Type-I 2HDM
HEL \& Haber, hep-ph/9909335; Chiang \& Yagyu, 0902.4665; Type-I: Grant, hep-ph/9410267
$B_{s}-\bar{B}_{s}$ mixing: adapted from Type-I 2HDM
Mahmoudi \& Stal, 0907.1791
$B_{s} \rightarrow \mu^{+} \mu^{-}$: adapted from new calculation for Aligned 2HDM
Li, Lu \& Pich, 1404.5865
$b \rightarrow s \gamma$: adapted from Type-I 2HDM, using SuperIso
Barger, Hewett \& Phillips, PRD41, 3421 (1990); SuperIso v3.3 (Mahmoudi)
Strongest constraint is from $b \rightarrow s \gamma$.
We'll show two versions:

- "tight" constraint, 2σ from expt central value
- "loose" constraint, 2σ from SM limit (already 1.6σ from expt)

Indirect constraints: S parameter

We also implement the S-parameter constraint, marginalizing over the T-parameter.

Rationale:
T-parameter is (notoriously) divergent at 1-Ioop in GM model; to cancel the divergence one must introduce a global-SU(2) R^{-} violating counterterm.

Introduces a small tree-level breaking of custodial SU(2)
\rightarrow small tree-level contribution to ρ parameter
\rightarrow use to cancel a finite piece of the 1-loop contribution to T.

$b \rightarrow s \gamma$ constraint: interplay with theory constraints

 Together they give an upper bound on v_{χ}

Hartling, Kumar \& HEL, in preparation
light green: excluded by $b \rightarrow s \gamma$
dark green: "loose" constraint, $<2 \sigma$ from SM limit (already 1.6σ from expt) black: "tight" constraint, $<2 \sigma$ from expt central value

Comparison to direct search for $H^{++} \rightarrow W^{+} W^{+}$:

Theorists' recasting of ATLAS measurement of like-sign $W^{ \pm} W^{ \pm} j j$ cross section to constrain VBF $H^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$:

Hartling, Kumar \& HEL, in preparation

Chiang, Kanemura \& Yagyu, 1407.5053
(red points are excluded by S parameter)
Like-sign WWjj will eliminate a large fraction of the dark green points allowed by the "loose" $b \rightarrow s \gamma$ constraint.
VBF $H_{5}^{ \pm} \rightarrow W^{ \pm} Z$ constrains the same $m_{5}-v_{\chi}$ parameter plane.
$h(125)$ couplings: predictions for κ_{V} and κ_{f}

Hartling, Kumar \& HEL, in preparation
$\kappa_{V}=\cos \alpha \frac{v_{\phi}}{v}-\frac{8}{\sqrt{3}} \sin \alpha \frac{v_{\chi}}{v}$

$$
\kappa_{f}=\cos \alpha \frac{v}{v_{\phi}}
$$

Upper bound on v_{χ} imposed by $b \rightarrow s \gamma$ constrains $\kappa_{V} \lesssim 1.36$ and $\kappa_{f} \lesssim 1.51$. ("loose" constraint)

Direct search for H^{++}in like-sign $W W j j$ will tighten this.
$h(125)$ couplings: correlation of κ_{V} and κ_{f}

Hartling, Kumar \& HEL, in preparation
Along the line $\kappa_{V}=\kappa_{f}$, the "loose" $b \rightarrow s \gamma$ measurement constrains $\kappa_{V}=\kappa_{f} \lesssim 1.20$. (like-sign $W W_{j j}$ will tighten this)

All LHC Higgs cross sections can be simultaneously enhanced by up to $\sim 44 \% \Leftrightarrow$ enhancement can be hidden by an unobserved non-SM Higgs decay $B R_{\text {new }}$ up to $\sim 30 \%$. (LHC flat direction!)

Simultaneous enhancement of κ_{V} and $\kappa_{f} \Rightarrow$ light new particles!

$\kappa_{f} \lesssim 1$ when new particles are heavy: significant enhancement to match κ_{V} requires $M_{\text {new }} \lesssim 400 \mathrm{GeV}$.

Outlook: toward a calculator for the Georgi-Machacek model

GMCALC code:
Hartling, Kumar \& HEL, work in progress

- Fortran code, hoping to release this fall
- parameter inputs include m_{h}; can do param scans
- computes spectrum, $h^{0}-H^{0}$ mixing angle, v_{χ}
- implements theory checks (unitarity, bounded-from-below, no alt minima)
- implements constraints from S parameter, $b \rightarrow s \gamma, B_{s} \rightarrow \mu \mu$
- computes decay BRs, production couplings for all scalars
- working on implementing QCD and offshell corrections to decay partial widths
- planning interface to HiggsBounds/HiggsSignals

