

Decays of the SM-like Higgs boson in the Georgi-Machacek model

Heather Logan

Carleton University

Ottawa, Canada

LHC HXSWG, BRs subgroup October 8, 2014

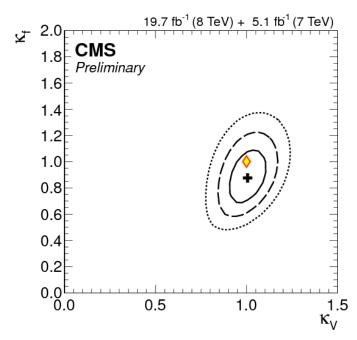
Based on K. Hartling, K. Kumar, H.E.L., 1404.2640 and work in preparation

Motivation for isospin ≥ 1

Consider the hWW coupling:

- SM:
$$i \frac{g^2 v}{2} g_{\mu\nu}$$
 ($v \simeq$ 246 GeV)

- 2HDM:
$$i\frac{g^2v}{2}g_{\mu\nu}\sin(\beta-\alpha)$$



- SM + singlet:
$$i\frac{g^2v}{2}g_{\mu\nu}\cos\alpha$$
 $(h = \phi\cos\alpha - s\sin\alpha)$

Extended Higgs sector with isospin doublets or singlets always have hVV couplings less than or equal to those in the SM.

- SM + some multiplet
$$X$$
: $i \frac{g^2 v_X}{2} g_{\mu\nu} \cdot 2 \left[T(T+1) - \frac{Y^2}{4} \right] \quad (Q = T^3 + Y/2)$

The only way to enhance the hWW coupling above its SM value is through a scalar with isospin ≥ 1 that has a non-negligible vev and mixes into the observed Higgs h. \Rightarrow triplets benchmark

Motivation for isospin ≥ 1

Enhancement of (all) the h couplings is also interesting because it can hide a non-SM contribution to the Higgs BRs.

LHC measures rates in particular final states:

Rate =
$$\frac{\sigma_{\text{SM}}\Gamma_{\text{SM}}}{\Gamma_{\text{SM}}^{\text{tot}}} \rightarrow \frac{\kappa^2 \sigma_{\text{SM}} \cdot \kappa^2 \Gamma_{\text{SM}}}{\kappa^2 \Gamma_{\text{SM}}^{\text{tot}} + \Gamma_{\text{new}}}$$

Rates are identical to SM Higgs predictions if

$$\kappa^2 = \frac{1}{1 - \mathsf{BR}_{\mathsf{new}}}$$

Constraint on Γ^{tot} (equivalently on κ) from off-shell $gg \ (\to h^*) \to ZZ$ assumes no new resonances in s-channel: rather model-dependent.

To study this further, nice to have a concrete model \Rightarrow e.g., can study effect of heavy H^0 resonance on off-shell $gg\ (\to h^*) \to ZZ$.

Problem with isospin ≥ 1 : the ρ parameter

 $ho \equiv$ ratio of strengths of charged and neutral weak currents $\simeq 1$ to high precision.

$$\rho = \frac{M_W^2}{M_Z^2 \cos \theta_W} = \frac{\sum_k 2[T_k(T_k + 1) - Y_k^2/4]v_k^2}{\sum_k Y_k^2 v_k^2}$$

 $(Q=T^3+Y/2$, vevs defined as $\langle \phi_k^0 \rangle = v_k/\sqrt{2}$ for complex reps and $\langle \phi_k^0 \rangle = v_k$ for real reps)

ho=1 "by accident" for SM doublet. also for isospin septet with Y=4 (septet: Hisano & Tsumura, 1301.6455; Kanemura, Kikuchi & Yagyu, 1301.7303)

SM + real triplet ξ (Y = 0): $\rho > 1$

SM + complex triplet χ (Y = 2): $\rho < 1$

Combine them both: $\langle \chi^0 \rangle = v_{\chi}$, $\langle \xi^0 \rangle = v_{\xi}$; doublet $\langle \phi^0 \rangle = v_{\phi}/\sqrt{2}$

$$\rho = \frac{v_{\phi}^2 + 4v_{\xi}^2 + 4v_{\chi}^2}{v_{\phi}^2 + 8v_{\chi}^2} = 1 \text{ when } v_{\xi} = v_{\chi}$$

Chanowitz & Golden, PLB165, 105 (1985)

Enforce $v_{\xi} = v_{\chi}$ using a symmetry.

Assemble the real + complex triplets into a bitriplet (analogous to the SM Higgs bidoublet) under global $SU(2)_L \times SU(2)_R$:

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^{+} \\ -\phi^{+*} & \phi^{0} \end{pmatrix} \qquad X = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ -\chi^{+*} & \xi^{0} & \chi^{+} \\ \chi^{++*} & -\xi^{+*} & \chi^{0} \end{pmatrix}$$

Vevs: (preserves the diagonal $SU(2)_c$ "custodial" subgroup)

$$\langle \Phi \rangle = \frac{v_{\phi}}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \langle X \rangle = v_{\chi} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

W and Z boson masses constrain the combination of vevs:

$$v_{\phi}^2 + 8v_{\chi}^2 \equiv v^2 \simeq (246 \text{ GeV})^2$$

Gauging hypercharge breaks the $SU(2)_R$: divergent radiative correction to ρ at 1-loop (need a relatively low cutoff scale)

Gunion, Vega & Wudka, PRD43, 2322 (1991)

Physical spectrum: Custodial symmetry fixes almost everything!

Bidoublet: $2 \times 2 \rightarrow 3 + 1$

Bitriplet: $3 \times 3 \rightarrow 5 + 3 + 1$

Custodial 5-plet $(H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--})$, common mass m_5 $H_5^{++} = \chi^{++}, H_5^+ = (\chi^+ - \xi^+)/\sqrt{2}, H_5^0 = \sqrt{2/3} \, \xi^0 - \sqrt{1/3} \, \chi^{0,r}$

Custodial triplet (H_3^+, H_3^0, H_3^-) , common mass m_3 $H_3^+ = -\sin\theta_H\phi^+ + \cos\theta_H(\chi^+ + \xi^+)/\sqrt{2}$, $H_3^0 = -\sin\theta_H\phi^{0,i} + \cos\theta_H\chi^{0,i}$; $\tan\theta_H = 2\sqrt{2}v_\chi/v_\phi$ (orthogonal triplet is the Goldstones)

Two custodial singlets h^0 , H^0 , masses m_h , m_H , mixing angle α

$$h^0 = \cos \alpha \phi^{0,r} - \sin \alpha (\sqrt{1/3} \xi^0 + \sqrt{2/3} \chi^{0,r})$$

$$H^0 = \sin \alpha \phi^{0,r} + \cos \alpha (\sqrt{1/3} \xi^0 + \sqrt{2/3} \chi^{0,r})$$

Most general scalar potential:

Aoki & Kanemura, 0712.4053

Chiang & Yagyu, 1211.2658; Chiang, Kuo & Yagyu, 1307.7526

Hartling, Kumar & HEL, 1404.2640

$$V(\Phi, X) = \frac{\mu_2^2}{2} \operatorname{Tr}(\Phi^{\dagger}\Phi) + \frac{\mu_3^2}{2} \operatorname{Tr}(X^{\dagger}X) + \lambda_1 [\operatorname{Tr}(\Phi^{\dagger}\Phi)]^2$$

$$+ \lambda_2 \operatorname{Tr}(\Phi^{\dagger}\Phi) \operatorname{Tr}(X^{\dagger}X) + \lambda_3 \operatorname{Tr}(X^{\dagger}XX^{\dagger}X)$$

$$+ \lambda_4 [\operatorname{Tr}(X^{\dagger}X)]^2 - \lambda_5 \operatorname{Tr}(\Phi^{\dagger}\tau^a \Phi \tau^b) \operatorname{Tr}(X^{\dagger}t^a X t^b)$$

$$- M_1 \operatorname{Tr}(\Phi^{\dagger}\tau^a \Phi \tau^b) (UXU^{\dagger})_{ab} - M_2 \operatorname{Tr}(X^{\dagger}t^a X t^b) (UXU^{\dagger})_{ab}$$

9 parameters, 2 fixed by M_W and $m_h \to$ free parameters are m_H , m_3 , m_5 , v_χ , α plus two triple-scalar couplings.

Dimension-3 terms usually omitted by imposing Z_2 sym. on X.

These dim-3 terms are essential for the model to possess a decoupling limit!

 $(UXU^{\dagger})_{ab}$ is just the matrix X in the Cartesian basis of SU(2), found using

$$U = \begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}$$

Theory constraints

Perturbative unitarity: impose $|\text{Re }a_0| < 1/2$ on eigenvalues of coupled-channel matrix of $2 \to 2$ scalar scattering processes. Constrain ranges of λ_{1-5} .

Aoki & Kanemura, 0712.4053

Bounded-from-belowness of the scalar potential: consider all combinations of fields nonzero. Further constraints on λ_{1-5} .

Hartling, Kumar & HEL, 1404.2640

Absence of deeper custodial SU(2)-breaking minima: numerical check that desired minimum is the deepest (1-dim scan over finite parameter range). Constraints involve all 9 parameters.

Hartling, Kumar & HEL, 1404.2640

(we do not consider situations in which the desired vacuum is metastable)

Indirect constraints: R_b , $b \rightarrow s\gamma$, etc.

Key observations:

$$(\tan \theta_H = 2\sqrt{2}v_\chi/v_\phi)$$

1) Fermion masses generated by a single $SU(2)_L$ Higgs doublet.

$$h\bar{f}f: \qquad -i\frac{m_f}{v}\frac{\cos\alpha}{\cos\theta_H}, \qquad H\bar{f}f: \qquad -i\frac{m_f}{v}\frac{\sin\alpha}{\cos\theta_H},$$

$$H_3^0\bar{u}u: \qquad \frac{m_u}{v}\tan\theta_H\gamma_5, \qquad H_3^0\bar{d}d: \qquad -\frac{m_d}{v}\tan\theta_H\gamma_5,$$

$$H_3^+\bar{u}d: \qquad -i\frac{\sqrt{2}}{v}V_{ud}\tan\theta_H\left(m_uP_L - m_dP_R\right),$$

$$H_3^+\bar{\nu}\ell: \qquad i\frac{\sqrt{2}}{v}\tan\theta_Hm_\ell P_R \qquad \text{(all } H_5f\bar{f} \text{ couplings } = 0)$$

(b, au Yukawas not enhanced: nonoblique/b-phys effects involve couplings $\sim m_t \tan \theta_H$)

- 2) $H_3^+H_3^-Z$ coupling is identical to H^+H^-Z coupling in 2HDMs due to custodial symmetry.
- \Rightarrow Leading nonoblique Z-pole and b-physics constraints are the same as those in the Type-I 2HDM, with $\cot \beta \rightarrow \tan \theta_H$ and $m_{H^+} \rightarrow m_3!$ These constrain the m_3-v_χ plane.

Indirect constraints: R_b , $b \rightarrow s\gamma$, etc.

 R_b : known a long time in GM model; same form as Type-I 2HDM HEL & Haber, hep-ph/9909335; Chiang & Yagyu, 0902.4665; Type-I: Grant, hep-ph/9410267

 B_s – \bar{B}_s mixing: adapted from Type-I 2HDM

Mahmoudi & Stal, 0907.1791

 $B_s \to \mu^+ \mu^-$: adapted from new calculation for Aligned 2HDM Li, Lu & Pich, 1404.5865

 $b \to s \gamma$: adapted from Type-I 2HDM, using SuperIso Barger, Hewett & Phillips, PRD41, 3421 (1990); SuperIso v3.3 (Mahmoudi)

Strongest constraint is from $b \to s\gamma$.

We'll show two versions:

- "tight" constraint, 2σ from expt central value
- "loose" constraint, 2σ from SM limit (already 1.6 σ from expt)

Heather Logan (Carleton U.)

Georgi-Machacek model

HXSWG, Oct 2014

Indirect constraints: S parameter

We also implement the S-parameter constraint, marginalizing over the T-parameter.

Rationale:

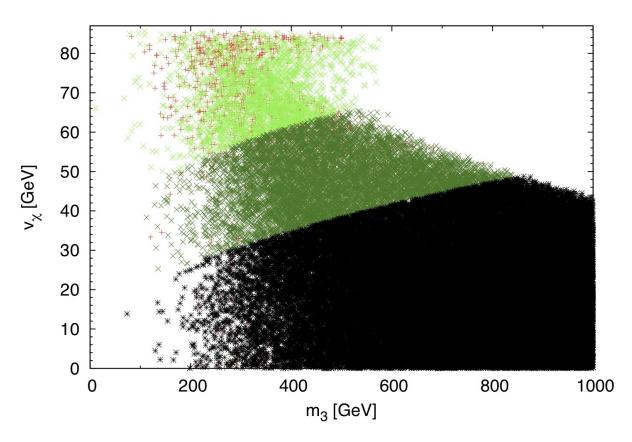
T-parameter is (notoriously) divergent at 1-loop in GM model; to cancel the divergence one must introduce a global-SU(2) $_R$ -violating counterterm. Gunion, Vega & Wudka, PRD43, 2322 (1991)

Introduces a small tree-level breaking of custodial SU(2)

- \rightarrow small tree-level contribution to ρ parameter
- \rightarrow use to cancel a finite piece of the 1-loop contribution to T.

$b \rightarrow s \gamma$ constraint: interplay with theory constraints

Together they give an upper bound on v_χ



Hartling, Kumar & HEL, in preparation

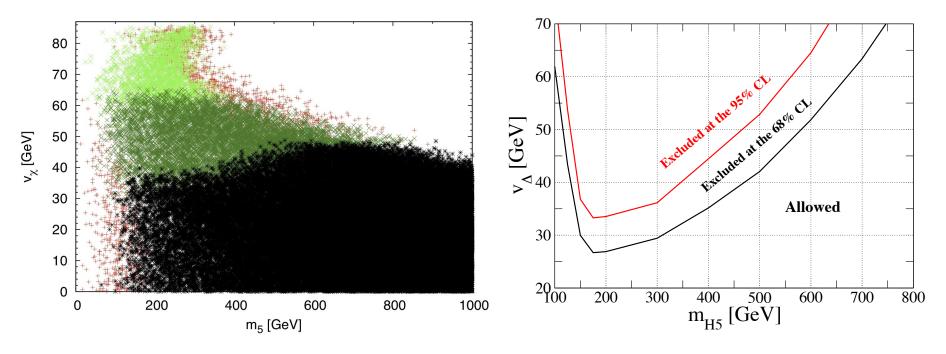
light green: excluded by $b \rightarrow s \gamma$

dark green: "loose" constraint, $<2\sigma$ from SM limit (already 1.6 σ from expt)

black: "tight" constraint, $<2\sigma$ from expt central value

Comparison to direct search for $H^{++} \rightarrow W^+W^+$:

Theorists' recasting of ATLAS measurement of like-sign $W^{\pm}W^{\pm}jj$ cross section to constrain VBF $H^{\pm\pm}\to W^{\pm}W^{\pm}$:



Hartling, Kumar & HEL, in preparation (red points are excluded by S parameter)

Chiang, Kanemura & Yagyu, 1407.5053

Like-sign WWjj will eliminate a large fraction of the dark green points allowed by the "loose" $b \rightarrow s\gamma$ constraint.

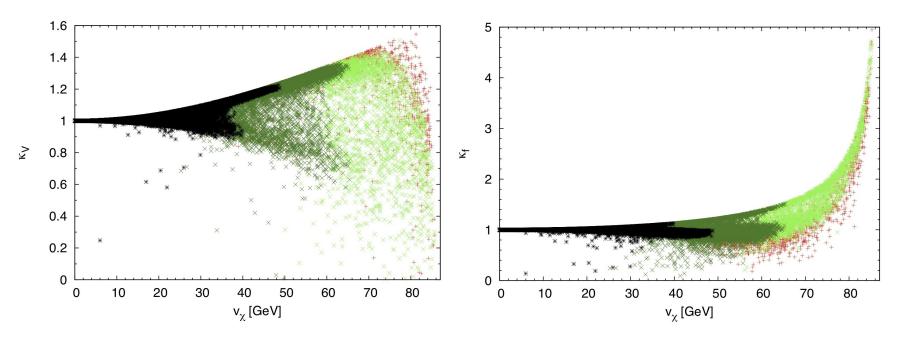
VBF $H_5^{\pm} \to W^{\pm}Z$ constrains the same $m_5 - v_{\chi}$ parameter plane.

Heather Logan (Carleton U.)

Georgi-Machacek model

HXSWG, Oct 2014

h(125) couplings: predictions for κ_V and κ_f



Hartling, Kumar & HEL, in preparation

$$\kappa_V = \cos\alpha \frac{v_\phi}{v} - \frac{8}{\sqrt{3}}\sin\alpha \frac{v_\chi}{v} \qquad \qquad \kappa_f = \cos\alpha \frac{v}{v_\phi}$$

Upper bound on v_χ imposed by $b\to s\gamma$ constrains $\kappa_V\lesssim 1.36$ and $\kappa_f\lesssim 1.51$. ("loose" constraint)

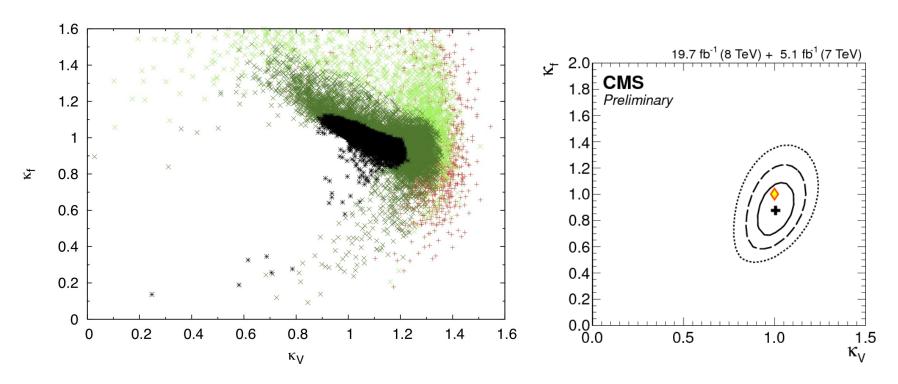
Direct search for H^{++} in like-sign WWjj will tighten this.

Heather Logan (Carleton U.)

Georgi-Machacek model

HXSWG, Oct 2014

h(125) couplings: correlation of κ_V and κ_f



Hartling, Kumar & HEL, in preparation

Along the line $\kappa_V=\kappa_f$, the "loose" $b\to s\gamma$ measurement constrains $\kappa_V=\kappa_f\lesssim 1.20$. (like-sign WWjj will tighten this)

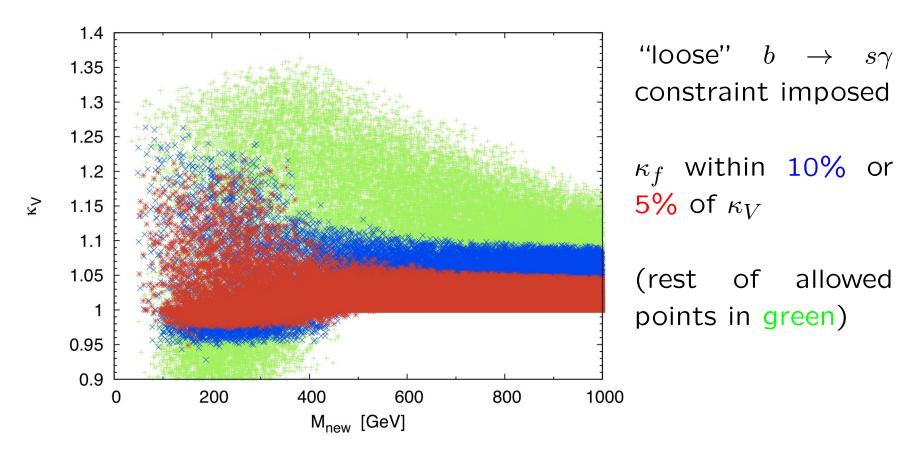
All LHC Higgs cross sections can be simultaneously enhanced by up to \sim 44% \Leftrightarrow enhancement can be hidden by an unobserved non-SM Higgs decay BR_{new} up to \sim 30%. (LHC flat direction!)

Heather Logan (Carleton U.)

Georgi-Machacek model

HXSWG. Oct 2014

Simultaneous enhancement of κ_V and $\kappa_f \Rightarrow$ light new particles!



Hartling, Kumar & HEL, in preparation

 $M_{\text{new}} \equiv \text{mass of } \textit{lightest} \text{ new state.}$

 $\kappa_f \lesssim 1$ when new particles are heavy: significant enhancement to match κ_V requires $M_{\sf new} \lesssim 400$ GeV.

Outlook: toward a calculator for the Georgi-Machacek model

GMCALC code:

Hartling, Kumar & HEL, work in progress

- Fortran code, hoping to release this fall
- parameter inputs include m_h ; can do param scans
- computes spectrum, $h^0\!-\!H^0$ mixing angle, v_χ
- implements theory checks (unitarity, bounded-from-below, no alt minima)
- implements constraints from S parameter, $b \to s\gamma$, $B_s \to \mu\mu$
- computes decay BRs, production couplings for all scalars
- working on implementing QCD and offshell corrections to decay partial widths
- planning interface to HiggsBounds/HiggsSignals

contact logan@physics.carleton.ca