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Context and Plan

Basic, very hard problem: General solution of

RMN −
1

2
gMNR = TMN ?
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Context and Plan

Basic, very hard problem: General solution of

RMN −
1

2
gMNR = TMN ?

⇒ Make simplifying assumptions (ansatz) [everybody]

⇒ Resulting system can become integrable [not everybody]

Plan

Integrability of gravity-matter systems

Solution generating techniques

Applications in gravity and STU supergravity

Outlook
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Symmetries in gravity (I)

Standard D = 4 gravity: R
(4)
MN = 0

Assume: One Killing vector:

g
(4)
MN =

(

e−φg
(3)
mn + eφAmAn eφAm

eφAn eφ

)

Effective dynamics in D = 3 for g
(3)
mn, φ and Am.

On-shell duality relation

Fmn = e−2φǫmn
p∂pχ.
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Symmetries in gravity (I)

Standard D = 4 gravity: R
(4)
MN = 0

Assume: One Killing vector:

g
(4)
MN =

(

e−φg
(3)
mn + eφAmAn eφAm

eφAn eφ

)

Effective dynamics in D = 3 for g
(3)
mn, φ and Am → χ.��❅❅

χ and φ parametrise SL(2,R)/SO(2) coset space [Ehlers ’52]

V =

(

e−φ/2 e−φ/2χ

0 eφ/2

)

⇒ Pm :=
1

2

(

∂mV V −1 + (∂mV V −1)T
)

Inverse scattering methods in STU supergravity – p.3



Symmetries in gravity (II)

Standard D = 4 gravity with one Killing vector. g
(3)
mn, V .

R
(3)
mn = Tr (PmPn)

Dm

(

√

g(3)P
m
)

= 0

Dm is a (composite) SO(2)-covariant derivative.
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Symmetries in gravity (II)

Standard D = 4 gravity with one Killing vector. g
(3)
mn, V .

R
(3)
mn = Tr (PmPn)

Dm

(

√

g(3)P
m
)

= 0

Dm is a (composite) SO(2)-covariant derivative.

System has global SL(2,R) symmetry that

transforms V but not g
(3)
mn

relates physically different solutions to each other (e.g.
Schwarzschild and Taub-NUT)

yields conserved current (three components)
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Symmetries in gravity (II)

Standard D = 4 gravity with one Killing vector. g
(3)
mn, V .

R
(3)
mn = Tr (PmPn)

Dm

(

√

g(3)P
m
)

= 0

Dm is a (composite) SO(2)-covariant derivative.

System has global SL(2,R) symmetry that

transforms V but not g
(3)
mn

relates physically different solutions to each other (e.g.
Schwarzschild and Taub-NUT)

yields conserved current (three components)

Comment: For maximal supergravity SL(2,R)→ E8(8)
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Symmetries in gravity (III)

Now assume two (commuting) Killing vectors (e.g., ∂φ, ∂t).

⇒ Effective reduction to D = 2

g
(3)
mn =

(

f2g
(2)
µν 0

0 ρ2

)
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Conformal factor
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Symmetries in gravity (III)

Now assume two (commuting) Killing vectors (e.g., ∂φ, ∂t).

⇒ Effective reduction to D = 2

g
(3)
mn =

(

f2g
(2)
µν 0

0 ρ2

)

✒✑
✓✏ ✘✘✘✘✘✘✾

Conformal factor

✒✑
✓✏

PPP✐
no vector d.o.f.s

in D=2

Choose flat Weyl coordinates ρ, z. Let x± = 1
2 (z ∓ iρ).

Resulting equations are (ρ-eqn solved by choice of coordinates)

Dµ (ρP
µ) = 0

±if−1∂±f =
ρ

2
Tr (P±P±)
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Symmetries in gravity (III)

Now assume two (commuting) Killing vectors (e.g., ∂φ, ∂t).

⇒ Effective reduction to D = 2

g
(3)
mn =

(

f2g
(2)
µν 0

0 ρ2

)

✒✑
✓✏ ✘✘✘✘✘✘✾

Conformal factor

✒✑
✓✏

PPP✐
no vector d.o.f.s

in D=2

Choose flat Weyl coordinates ρ, z. Let x± = 1
2 (z ∓ iρ).

Resulting equations are (ρ-eqn solved by choice of coordinates)

Dµ (ρP
µ) = 0

±if−1∂±f =
ρ

2
Tr (P±P±)

Symmetries of this system (beyond SL(2,R))?
Dualisations of what??
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Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

g
(4)
MN =

(

h2g
(2)
µν 0

0 ρ2ḡ
(int)
m̄n̄

)
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Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

g
(4)
MN =

(

h2g
(2)
µν 0

0 ρ2ḡ
(int)
m̄n̄

)

✒✑
✓✏ ✘✘✘✘✘✘✾

different conf. factor
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Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

g
(4)
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h2g
(2)
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0 ρ2ḡ
(int)
m̄n̄
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different conf. factor

✚✙
✛✘

PPP✐
uni-modular

internal metric
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Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

g
(4)
MN =

(

h2g
(2)
µν 0

0 ρ2ḡ
(int)
m̄n̄

)

✒✑
✓✏ ✘✘✘✘✘✘✾

different conf. factor

✚✙
✛✘

PPP✐
uni-modular

internal metric

Uni-modular internal metric g
(2)
m̄n̄ carries global action of

SLMM(2,R) [Matzner, Misner ’67].
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PPP✐
uni-modular

internal metric

Uni-modular internal metric g
(2)
m̄n̄ carries global action of

SLMM(2,R) [Matzner, Misner ’67].

⇒ This is different from SL(2,R) discussed so far!

⇒ Fields that are acted upon related by duality

⇒ Interplay yields an∞-dim’l global symmetry [Geroch ’71]
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Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

g
(4)
MN =

(

h2g
(2)
µν 0

0 ρ2ḡ
(int)
m̄n̄

)

✒✑
✓✏ ✘✘✘✘✘✘✾

different conf. factor

✚✙
✛✘

PPP✐
uni-modular

internal metric

Uni-modular internal metric g
(2)
m̄n̄ carries global action of

SLMM(2,R) [Matzner, Misner ’67].

⇒ This is different from SL(2,R) discussed so far!

⇒ Fields that are acted upon related by duality

⇒ Interplay yields an∞-dim’l global symmetry [Geroch ’71]

⇒∞ number of conserved quantities⇒ Integrability
[Ernst; Belinski, Zakharov; Breitenlohner, Maison; Julia; Nicolai]
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Integrability (I)

Go back to ‘Ehlers’ formulation

∂µ (ρP
µ) = ρ [Qµ, P

µ]

±if−1∂±f =
ρ

2
Tr (P±P±)

Get f by direct integration if P± ∈ Lie(SL(2,R)) known.
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Integrability (I)

Go back to ‘Ehlers’ formulation

∂µ (ρP
µ) = ρ [Qµ, P

µ]

Still a complicated non-linear system for P±...
⇒ Try to find a linear system related to it (Lax pair).
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Integrability (I)

Go back to ‘Ehlers’ formulation

∂µ (ρP
µ) = ρ [Qµ, P

µ]

Still a complicated non-linear system for P±...
⇒ Try to find a linear system related to it (Lax pair).

Example: Consider linear matrix equations

∂µA ·A−1 = Mµ

Compatibility ∂µ∂νA = ∂ν∂µA implies non-linear

∂µMν − ∂µMν = [Mµ ,Mν ]
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Integrability (I)

Go back to ‘Ehlers’ formulation

∂µ (ρP
µ) = ρ [Qµ, P

µ]

Still a complicated non-linear system for P±...
⇒ Try to find a linear system related to it (Lax pair).

Example: Consider linear matrix equations

∂µA(t) ·A−1(t) = Mµ(t)

Compatibility ∂µ∂νA = ∂ν∂µA implies non-linear

∂µMν(t)− ∂µMν(t) = [Mµ(t),Mν(t)]

Often useful to introduce spectral parameter t into the problem

(complex analysis and spectrum of conserved quantities).
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Integrability (II)

Repeat for non-linear Einstein equation

∂µ (ρP
µ) = ρ [Qµ, P

µ]♥
❍❍❨
complicates matters!
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Integrability (II)

Repeat for non-linear Einstein equation

∂µ (ρP
µ) = ρ [Qµ, P

µ]♥
❍❍❨
complicates matters!

makes t space-time (ρ, z) dependent
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Integrability (II)

Repeat for non-linear Einstein equation

∂µ (ρP
µ) = ρ [Qµ, P

µ]♥
❍❍❨
complicates matters!

makes t space-time (ρ, z) dependent

Linear system for gravity [Breitenlohner, Maison 1985]

∂±V(t) · V(t)−1 =
1∓ it

1± it
P± +Q±

Compatibility yields Einstein equation iff

t−1∂±t =
1∓ it

1± it
ρ−1∂±ρ
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Integrability (II)

Repeat for non-linear Einstein equation

∂µ (ρP
µ) = ρ [Qµ, P

µ]♥
❍❍❨
complicates matters!

makes t space-time (ρ, z) dependent

Linear system for gravity [Breitenlohner, Maison 1985]

∂±V(t) · V(t)−1 =
1∓ it

1± it
P± +Q±

Compatibility yields Einstein equation iff

t2 − 2t

ρ
(z − w)− 1 = 0
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Integrability (II)

Repeat for non-linear Einstein equation

∂µ (ρP
µ) = ρ [Qµ, P

µ]♥
❍❍❨
complicates matters!

makes t space-time (ρ, z) dependent

Linear system for gravity [Breitenlohner, Maison 1985]

∂±V(t) · V(t)−1 =
1∓ it

1± it
P± +Q±

Compatibility yields Einstein equation iff

t2 − 2t

ρ
(z − w)− 1 = 0❧ ✘✘✘✾ constant spectral parameter

⇒ t lives on two-sheeted Riemann surface.
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Integrability (III)

Basic objects:

Vielbein: V(t) = V + tV(1) + t2V(2) + . . .

Monodromy matrix: M(w) = VT (−1/t)V(t)
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Integrability (III)

Basic objects:

Vielbein: V(t) = V + tV(1) + t2V(2) + . . .

Monodromy matrix: M(w) = VT (−1/t)V(t)
✍✌✎☞ ✏✏✏✮

contains physical fields

✣✢
✤✜

PPP✐
∂µM(w) = 0 !
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Integrability (III)

Basic objects:

Vielbein: V(t) = V + tV(1) + t2V(2) + . . .

Monodromy matrix: M(w) = VT (−1/t)V(t)
✍✌✎☞ ✏✏✏✮

contains physical fields

✣✢
✤✜

PPP✐
∂µM(w) = 0 !

Group theoretic structure

Transition V ∈ SL(2,R)→ V(t) related to SL(2,R) loop
group; in fact whole affine Kac–Moody group [Julia 1980]

Inverse scattering methods in STU supergravity – p.9



Integrability (III)

Basic objects:

Vielbein: V(t) = V + tV(1) + t2V(2) + . . .

Monodromy matrix: M(w) = VT (−1/t)V(t)
✍✌✎☞ ✏✏✏✮

contains physical fields

✣✢
✤✜

PPP✐
∂µM(w) = 0 !

Group theoretic structure

Transition V ∈ SL(2,R)→ V(t) related to SL(2,R) loop
group; in fact whole affine Kac–Moody group [Julia 1980]

Action of KM element g(w) by V(t)→ k(t)V(t)g(w).
‘Local’ k(t) to restore Taylor series in t for V(t)
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Integrability (III)

Basic objects:

Vielbein: V(t) = V + tV(1) + t2V(2) + . . .

Monodromy matrix: M(w) = VT (−1/t)V(t)
✍✌✎☞ ✏✏✏✮

contains physical fields

✣✢
✤✜

PPP✐
∂µM(w) = 0 !

Group theoretic structure

Transition V ∈ SL(2,R)→ V(t) related to SL(2,R) loop
group; in fact whole affine Kac–Moody group [Julia 1980]

Action of KM element g(w) by V(t)→ k(t)V(t)g(w).
‘Local’ k(t) to restore Taylor series in t for V(t)
Chevalley involution of KM is τ(V(t)) = VT (−1/t)
∞-ly many conserved quantities from global KM action
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Integrability (IV)

These properties are hallmarks of an integrable system.

⇒ Gravity reduced to D = 2 is integrable!

Similar results for many other (super-)gravities [Breitenlohner,

Gibbons, Maison; Julia; Nicolai; KKV]
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Integrability (IV)

These properties are hallmarks of an integrable system.

⇒ Gravity reduced to D = 2 is integrable!

Similar results for many other (super-)gravities [Breitenlohner,

Gibbons, Maison; Julia; Nicolai; KKV]

Formally nice, but have we gained anything?
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Integrability (IV)

These properties are hallmarks of an integrable system.

⇒ Gravity reduced to D = 2 is integrable!

Similar results for many other (super-)gravities [Breitenlohner,

Gibbons, Maison; Julia; Nicolai; KKV]

Formally nice, but have we gained anything?

Many techniques developed for integrable models:

Inverse scattering method

Bäcklund transformations

. . .

⇒ Use integrability to construct solutions of gravity!

Inverse scattering methods in STU supergravity – p.10



Solution generation (I)

Generating V(t) and monodromyM(w) = VT (−1/t)V(t).

Inverse scattering methods in STU supergravity – p.11



Solution generation (I)

Generating V(t) and monodromyM(w) = VT (−1/t)V(t).
Sketch of generating technique V → V new with affine g(w)

V → V(t) → M(w)

V new ← Vnew(t) ← Mnew(w)
❄

Group transformation

Mnew(w) = gT (w)M(w)g(w)

Seed solution
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Solution generation (I)

Generating V(t) and monodromyM(w) = VT (−1/t)V(t).
Sketch of generating technique V → V new with affine g(w)

V → V(t) → M(w)

V new ← Vnew(t) ← Mnew(w)
❄

Group transformation

Mnew(w) = gT (w)M(w)g(w)

Seed solution

Recall: V(t)→ Vnew(t) = k(t)V(t)g(w). Working withM(w)
avoids k(t).
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Solution generation (I)

Generating V(t) and monodromyM(w) = VT (−1/t)V(t).
Sketch of generating technique V → V new with affine g(w)

V → V(t) → M(w)

V new ← Vnew(t) ← Mnew(w)
❄

Group transformation

Mnew(w) = gT (w)M(w)g(w)

Seed solution

Recall: V(t)→ Vnew(t) = k(t)V(t)g(w). Working withM(w)
avoids k(t).

Hard step: Factorisation ofMnew(w) into Vnew(t)
⇒ Riemann–Hilbert problem

✑
✑
✑
✑

✑
✑
✑
✑
✑

✑✸
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Solution generation (II)

Restrict attention to soliton sector: [BZ=Belinski-Zakharov 1978]

Mnew(w) is meromorphic with simple poles in w and rank
one residues.
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Solution generation (II)

Restrict attention to soliton sector: [BZ=Belinski-Zakharov 1978]

Mnew(w) is meromorphic with simple poles in w and rank
one residues.

Includes many interesting solutions.

Two poles

No pole
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Solution generation (III)

D = 4 gravity: Form ofM(w) [drop new]

M(w) = 11 +

N
∑

k=1

Ak

w − wk

with

M(w) ∈ SL(2,R) and symmetric

N : number of solitons

Residue Ak of rank one and symmetric
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Solution generation (III)

D = 4 gravity: Form ofM(w) [drop new]

M(w) = 11 +

N
∑

k=1

Ak

w − wk

with

M(w) ∈ SL(2,R) and symmetric

N : number of solitons

Residue Ak of rank one and symmetric

In this case, problem becomes an exercise in linear algebra!

[Belinski, Zakharov; Breitenlohner, Maison]
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Solution generation (IV)

M(w) = 11 +

N
∑

k=1

Ak

w − wk
⇒ M(w)−1 = 11−

N
∑

k=1

Bk

w − wk

Parametrise (rank one!)

Ak = αkaka
T
k , Bk = βkbkb

T
k

ak, bk constant vectors (like ‘BZ vectors’)

αk, βk normalisations
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Solution generation (IV)

M(w) = 11 +

N
∑

k=1

Ak

w − wk
⇒ M(w)−1 = 11−

N
∑

k=1

Bk

w − wk

Parametrise (rank one!)

Ak = αkaka
T
k , Bk = βkbkb

T
k

ak, bk constant vectors (like ‘BZ vectors’)

αk, βk normalisations

To obtain factorisationM(w) = VT (−1/t)V(t)

1. Make similar factorized ansatz for V(t)
2. Analyse carefully residues ofM(w)M−1(w) etc.
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Solution generation (V)

Upshot is

M = V TV = 11 +

N
∑

k,l=1

bkt
−1
k

(

Γ−1
)

kl
aTl

with

Γkl =

{

γk
tk

for k = l
aT

k bl
tk−tl

for k 6= l

tk =
1

ρ

(

(z − wk) +
√

(z − wk)2 + ρ2
)

Conformal factor also simple: f2 = c det(Γ)
∏N

k=1(νktk)

[Expressions for γk and νk slightly more involved⇒ didn’t fit.]
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Solution examples

Schwarzschild [Breitenlohner, Maison]

M(w) =

(

w+m
w−m 0

0 w−m
w+m

)

Kerr–NUT [KKV1]

M(w) =
1

w2 − c2

(

(w +m)2 + (n+ a)2 2(am− wn)

2(am− wn) (w −m)2 + (n− a)2

)

with c2 = m2 + n2 − a2.
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Other theories

D = 4 gravity well-studied, also within inverse scattering
approach of Belinski and Zakharov.
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Other theories

D = 4 gravity well-studied, also within inverse scattering
approach of Belinski and Zakharov.

BZ inverse scattering approach not phrased
group-theoretically, secretly strongly modelled on
GL(2,R). Does not generalise immediately to other
theories ([Pomeransky] for D = 5 gravity).
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Other theories

D = 4 gravity well-studied, also within inverse scattering
approach of Belinski and Zakharov.

BZ inverse scattering approach not phrased
group-theoretically, secretly strongly modelled on
GL(2,R). Does not generalise immediately to other
theories ([Pomeransky] for D = 5 gravity).

Formalism above has the potential to generalise to
other groups/theories. E.g.

E8 for maximal supergravity
SO(4, 4) for STU-gravity
G2 for minimal D = 5 supergravity
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Other theories

D = 4 gravity well-studied, also within inverse scattering
approach of Belinski and Zakharov.

BZ inverse scattering approach not phrased
group-theoretically, secretly strongly modelled on
GL(2,R). Does not generalise immediately to other
theories ([Pomeransky] for D = 5 gravity).

Formalism above has the potential to generalise to
other groups/theories. E.g.

E8 for maximal supergravity
SO(4, 4) for STU-gravity
G2 for minimal D = 5 supergravity

However, some important technical differences arise...
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STU model (I)

N = 2 supergravity in D = 4 coupled to three vector
multiplets with cubic prepotential [Cremmer et al. 1985]

F = −X1X2X3

X0

Dimensionally reduce to D = 3. Bosonic fields g
(3)
mn and V .

V now in SO(4, 4)/SO(2, 2)× SO(2, 2), total of 16 scalars.
Otherwise set-up identical to before.
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STU model (I)

N = 2 supergravity in D = 4 coupled to three vector
multiplets with cubic prepotential [Cremmer et al. 1985]

F = −X1X2X3

X0

Dimensionally reduce to D = 3. Bosonic fields g
(3)
mn and V .

V now in SO(4, 4)/SO(2, 2)× SO(2, 2), total of 16 scalars.
Otherwise set-up identical to before.

Technical differences in

Rank of residue ofM(w)

Properties of SO(4, 4)
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STU model (II)

Example: 4D Kerr [KKV2]

M(w) =





































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0
a
2+(w−m)2

w2
−c2

0 0 0 0 −
2am

w2
−c2

0 0 0
a
2+(w−m)2

w2
−c2

0 0 2am
w2

−c2
0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 2am
w2

−c2
0 0

a
2+(m+w)2

w2
−c2

0

0 0 −
2am

w2
−c2

0 0 0 0
a
2+(m+w)2

w2
−c2





































Two solitons at w = ±c =
√
m2 − a2. Residues of rank two!
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STU model (II)

Example: 4D Kerr [KKV2]

M(w) =





































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0
a
2+(w−m)2

w2
−c2

0 0 0 0 −
2am

w2
−c2

0 0 0
a
2+(w−m)2

w2
−c2

0 0 2am
w2

−c2
0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 2am
w2

−c2
0 0

a
2+(m+w)2

w2
−c2

0

0 0 −
2am

w2
−c2

0 0 0 0
a
2+(m+w)2

w2
−c2





































Two solitons at w = ±c =
√
m2 − a2. Residues of rank two!

Need to generalise formalism for solution generation.
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Generalised solution generation [KKV2]

rank one rank r

soliton wk; k = 1, . . . N soliton wk; k = 1, . . . N

vectors ak vectors aαk ; α = 1, . . . , r

matrix Γkl matrix Γαβ
kl

conf. f ∝ det(Γkl)
N
∏

k=1

t̃k f ∝ det(Γαβ
kl )

(

N
∏

k=1

t̃k

)r

New formula for asymptotically 4D solution roughly

M = 11 +

N
∑

k,l=1

r
∑

α,β=1

bαk t
−1
k (Γ−1)αβkl (a

β
l )

T
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Generalised solution generation [KKV2]

rank one rank r

soliton wk; k = 1, . . . N soliton wk; k = 1, . . . N

vectors ak vectors aαk ; α = 1, . . . , r

matrix Γkl matrix Γαβ
kl

conf. f ∝ det(Γkl)
N
∏

k=1

t̃k f ∝ det(Γαβ
kl )

(

N
∏

k=1

t̃k

)r

New formula for asymptotically 4D solution roughly

M = 11 +

N
∑

k,l=1

r
∑

α,β=1

bαk t
−1
k (Γ−1)αβkl (a

β
l )

T

[Effectively everything boosted up to an rN -dim’l space.]
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STU model in various dimensions

STU supergravity can be lifted to D = 5 and D = 6.

L(6) = R− 1

2
(∂Φ)2 − 1

12
e−

√
2ΦHMNPH

MNP

What about generating black holes in D > 4?
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STU model in various dimensions

STU supergravity can be lifted to D = 5 and D = 6.

L(6) = R− 1

2
(∂Φ)2 − 1

12
e−

√
2ΦHMNPH

MNP

What about generating black holes in D > 4?

Important for

Exploring zoo of higher-dimensional black objects

Mathur’s fuzzball proposal, e.g, understanding the
D1-D5-P system.
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STU model in various dimensions

STU supergravity can be lifted to D = 5 and D = 6.

L(6) = R− 1

2
(∂Φ)2 − 1

12
e−

√
2ΦHMNPH

MNP

What about generating black holes in D > 4?

Important for

Exploring zoo of higher-dimensional black objects

Mathur’s fuzzball proposal, e.g, understanding the
D1-D5-P system.

Example: JMaRT solution [hep-th/0504181]. Smooth
non-SUSY 5D solution with two or three
e-m charges.
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5D asymptotics

Solutions above had 4D-asymptotics and limw→∞M(w) = 11

For 5D-asymptotics (R1,4) get (see also [Giusto, Saxena 2007])

lim
w→∞

M(w) =





















0 0 0 0 0 0 −1 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1





















=: Y

Technical changes in inverse scattering procedure:
Charging transformations have to preserve these
asymptotics but otherwise very similar.
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JMaRT from inverse scattering [KKV3]

Original JMaRT construction from over-rotating charged
Myers-Perry black hole [Cvetič-Youm 96].

Over-rotating in inverse scattering =⇒ complex poles =⇒
complex residues for SO(4, 4)M(w)
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JMaRT from inverse scattering [KKV3]

Original JMaRT construction from over-rotating charged
Myers-Perry black hole [Cvetič-Youm 96].

Over-rotating in inverse scattering =⇒ complex poles =⇒
complex residues for SO(4, 4)M(w) =⇒ not desirable!
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JMaRT from inverse scattering [KKV3]

Original JMaRT construction from over-rotating charged
Myers-Perry black hole [Cvetič-Youm 96].

Over-rotating in inverse scattering =⇒ complex poles =⇒
complex residues for SO(4, 4)M(w) =⇒ not desirable!

Way around: Use embedding into Lorentzian 6D and use
Euclidean 5D solution

ds26 = −dt2 + ds25

In Euclidean 5D have instanton similar to over-rotating MP
but with real poles.
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JMaRT from inverse scattering (II)

Strategy

1. Construct 5D instanton from inverse scattering (c real)

M(w) = Y +
A1

w − c
+

A2

w + c

and lift to Lorentzian 6D

2. Charge up 6D solution with appropriate SO(4, 4)
element

3. Analyse solution and recognise JMaRT
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JMaRT from inverse scattering (II)

Strategy

1. Construct 5D instanton from inverse scattering (c real)

M(w) = Y +
A1

w − c
+

A2

w + c

and lift to Lorentzian 6D

2. Charge up 6D solution with appropriate SO(4, 4)
element

3. Analyse solution and recognise JMaRT

Strategy works but details are a bit lengthy =⇒ [KKV3].
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Outlook

‘BM method’ intertwines nicely with finite group
methods. Wide applicability

Fermions can be included [Nicolai 1990]

Characterisation of physically interesting solutions in
terms of group data?

Study of thermodynamics?

Useful for systematic study of zoo of solutions?

Relation to ‘subtracted geometry’ and conformal
symmetry?

Gauged theories?
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Outlook

‘BM method’ intertwines nicely with finite group
methods. Wide applicability

Fermions can be included [Nicolai 1990]

Characterisation of physically interesting solutions in
terms of group data?

Study of thermodynamics?

Useful for systematic study of zoo of solutions?

Relation to ‘subtracted geometry’ and conformal
symmetry?

Gauged theories?

Thank you for your attention!
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