Inverse scattering methods in STU supergravity

Axel Kleinschmidt (Albert Einstein Institute, Potsdam)

CERN, December 2, 2014
Joint work with Despoina Katsimpouri and Amitabh Virmani
[KKV1, KKV2, KKV3: JHEP and 1211.3044, 1311.7018, 1409.6471]

Context and Plan

Basic, very hard problem: General solution of

$$
R_{M N}-\frac{1}{2} g_{M N} R=T_{M N} ?
$$

Context and Plan

Basic, very hard problem: General solution of

$$
R_{M N}-\frac{1}{2} g_{M N} R=T_{M N} ?
$$

\Rightarrow Make simplifying assumptions (ansatz) [everybody]
\Rightarrow Resulting system can become integrable

Context and Plan

Basic, very hard problem: General solution of

$$
R_{M N}-\frac{1}{2} g_{M N} R=T_{M N} ?
$$

\Rightarrow Make simplifying assumptions (ansatz) [everybody]
\Rightarrow Resulting system can become integrable [not everybody]

Context and Plan

Basic, very hard problem: General solution of

$$
R_{M N}-\frac{1}{2} g_{M N} R=T_{M N} ?
$$

\Rightarrow Make simplifying assumptions (ansatz) [everybody]
\Rightarrow Resulting system can become integrable [not everybody]
Plan

- Integrability of gravity-matter systems
- Solution generating techniques
- Applications in gravity and STU supergravity
- Outlook

Symmetries in gravity (I)

Standard $D=4$ gravity: $\quad R_{M N}^{(4)}=0$
Assume: One Killing vector:

$$
g_{M N}^{(4)}=\left(\begin{array}{cc}
e^{-\phi} g_{m n}^{(3)}+e^{\phi} A_{m} A_{n} & e^{\phi} A_{m} \\
e^{\phi} A_{n} & e^{\phi}
\end{array}\right)
$$

Effective dynamics in $D=3$ for $g_{m n}^{(3)}, \phi$ and A_{m}. On-shell duality relation

$$
F_{m n}=e^{-2 \phi} \epsilon_{m n}{ }^{p} \partial_{p} \chi .
$$

Symmetries in gravity (I)

Standard $D=4$ gravity: $\quad R_{M N}^{(4)}=0$
Assume: One Killing vector:

$$
g_{M N}^{(4)}=\left(\begin{array}{cc}
e^{-\phi} g_{m n}^{(3)}+e^{\phi} A_{m} A_{n} & e^{\phi} A_{m} \\
e^{\phi} A_{n} & e^{\phi}
\end{array}\right)
$$

Effective dynamics in $D=3$ for $g_{m n}^{(3)}, \phi$ and $\not X_{n} \rightarrow \chi$.
χ and ϕ parametrise $S L(2, \mathbb{R}) / S O(2)$ coset space [Eh1ers ' ${ }^{52]}$

$$
V=\left(\begin{array}{cc}
e^{-\phi / 2} & e^{-\phi / 2} \chi \\
0 & e^{\phi / 2}
\end{array}\right) \Rightarrow P_{m}:=\frac{1}{2}\left(\partial_{m} V V^{-1}+\left(\partial_{m} V V^{-1}\right)^{T}\right)
$$

Symmetries in gravity (II)

Standard $D=4$ gravity with one Killing vector. $g_{m n}^{(3)}, V$.

$$
\begin{aligned}
R_{m n}^{(3)} & =\operatorname{Tr}\left(P_{m} P_{n}\right) \\
D_{m}\left(\sqrt{g_{(3)}} P^{m}\right) & =0
\end{aligned}
$$

D_{m} is a (composite) $S O(2)$-covariant derivative.

Symmetries in gravity (II)

Standard $D=4$ gravity with one Killing vector. $g_{m n}^{(3)}, V$.

$$
\begin{aligned}
R_{m n}^{(3)} & =\operatorname{Tr}\left(P_{m} P_{n}\right) \\
D_{m}\left(\sqrt{g_{(3)}} P^{m}\right) & =0
\end{aligned}
$$

D_{m} is a (composite) $S O(2)$-covariant derivative.
System has global $S L(2, \mathbb{R})$ symmetry that

- transforms V but not $g_{m n}^{(3)}$
- relates physically different solutions to each other (e.g. Schwarzschild and Taub-NUT)
- yields conserved current (three components)

Symmetries in gravity (II)

Standard $D=4$ gravity with one Killing vector. $g_{m n}^{(3)}, V$.

$$
\begin{aligned}
R_{m n}^{(3)} & =\operatorname{Tr}\left(P_{m} P_{n}\right) \\
D_{m}\left(\sqrt{g_{(3)}} P^{m}\right) & =0
\end{aligned}
$$

D_{m} is a (composite) $S O(2)$-covariant derivative.
System has global $S L(2, \mathbb{R})$ symmetry that

- transforms V but not $g_{m n}^{(3)}$
- relates physically different solutions to each other (e.g. Schwarzschild and Taub-NUT)
- yields conserved current (three components)

Comment: For maximal supergravity $S L(2, \mathbb{R}) \rightarrow E_{8(8)}$

Symmetries in gravity (III)

Now assume two (commuting) Killing vectors (e.g., $\partial_{\phi}, \partial_{t}$).
\Rightarrow Effective reduction to $D=2$

$$
g_{m n}^{(3)}=\left(\begin{array}{cc}
f^{2} g_{\mu \nu}^{(2)} & 0 \\
0 & \rho^{2}
\end{array}\right)
$$

Symmetries in gravity (III)

Now assume two (commuting) Killing vectors (e.g., $\partial_{\phi}, \partial_{t}$).
\Rightarrow Effective reduction to $D=2$ Conformal factor

$$
g_{m n}^{(3)}=\left(\begin{array}{cc}
\begin{array}{|c}
f^{2} \\
)_{\mu \nu}^{(2)}
\end{array} & 0 \\
0 & \rho^{2}
\end{array}\right)
$$

Symmetries in gravity (III)

Now assume two (commuting) Killing vectors (e.g., $\partial_{\phi}, \partial_{t}$).
\Rightarrow Effective reduction to $D=2$ Conformal factor

Symmetries in gravity (III)

Now assume two (commuting) Killing vectors (e.g., $\partial_{\phi}, \partial_{t}$).
\Rightarrow Effective reduction to $D=2$ Conformal factor

Choose flat Weyl coordinates ρ, z. Let $x^{ \pm}=\frac{1}{2}(z \mp i \rho)$. Resulting equations are (ρ-eqn solved by choice of coordinates)

$$
\begin{aligned}
D_{\mu}\left(\rho P^{\mu}\right) & =0 \\
\pm i f^{-1} \partial_{ \pm} f & =\frac{\rho}{2} \operatorname{Tr}\left(P_{ \pm} P_{ \pm}\right)
\end{aligned}
$$

Symmetries in gravity (III)

Now assume two (commuting) Killing vectors (e.g., $\partial_{\phi}, \partial_{t}$).
\Rightarrow Effective reduction to $D=2$ Conformal factor

Choose flat Weyl coordinates ρ, z. Let $x^{ \pm}=\frac{1}{2}(z \mp i \rho)$. Resulting equations are (ρ-eqn solved by choice of coordinates)

$$
\begin{aligned}
D_{\mu}\left(\rho P^{\mu}\right) & =0 \\
\pm i f^{-1} \partial_{ \pm} f & =\frac{\rho}{2} \operatorname{Tr}\left(P_{ \pm} P_{ \pm}\right)
\end{aligned}
$$

Symmetries of this system (beyond $S L(2, \mathbb{R})$)?
Dualisations of what??

Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

$$
g_{M N}^{(4)}=\left(\begin{array}{cc}
h^{2} g_{\mu \nu}^{(2)} & 0 \\
0 & \rho^{2} \bar{g}_{\bar{m} \bar{n}}^{\text {(int }}
\end{array}\right)
$$

Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

$$
g_{M N}^{(4)}=\left(\begin{array}{cc}
h^{2} g_{\mu \nu}^{(2)} & 0 \\
0 & \rho^{2} \bar{g}_{\bar{m} \bar{n}}^{(\mathrm{int})}
\end{array}\right)
$$

Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

Uni-modular internal metric $g_{\bar{m} \bar{n}}^{(2)}$ carries global action of $S L_{\mathrm{MM}}(2, \mathbb{R})$ [Matzner, Misner ${ }^{6}$ 67].

Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

Uni-modular internal metric $g_{\bar{m} \bar{n}}^{(2)}$ carries global action of $S L_{\mathrm{MM}}(2, \mathbb{R})$ [Matzner, Misner ${ }^{677]}$.
\Rightarrow This is different from $S L(2, \mathbb{R})$ discussed so far!
\Rightarrow Fields that are acted upon related by duality
\Rightarrow Interplay yields an ∞-dim'l global symmetry [Geroch '71]

Symmetries in gravity (IV)

Two Killing vectors, alternative viewpoint:

Uni-modular internal metric $g_{\bar{m} \bar{n}}^{(2)}$ carries global action of $S L_{\mathrm{MM}}(2, \mathbb{R})$ [Matzner, Misner ${ }^{6} 67$].
\Rightarrow This is different from $S L(2, \mathbb{R})$ discussed so far!
\Rightarrow Fields that are acted upon related by duality
\Rightarrow Interplay yields an ∞-dim'l global symmetry [Geroch '71]
$\Rightarrow \infty$ number of conserved quantities \Rightarrow Integrability

```
[Ernst; Belinski, Zakharov; Breitenlohner, Maison; Julia; Nicolai]
```


Integrability (I)

Go back to ‘Ehlers’ formulation

$$
\begin{aligned}
\partial_{\mu}\left(\rho P^{\mu}\right) & =\rho\left[Q_{\mu}, P^{\mu}\right] \\
\pm i f^{-1} \partial_{ \pm} f & =\frac{\rho}{2} \operatorname{Tr}\left(P_{ \pm} P_{ \pm}\right)
\end{aligned}
$$

Get f by direct integration if $P_{ \pm} \in \operatorname{Lie}(S L(2, \mathbb{R}))$ known.

Integrability (I)

Go back to 'Ehlers’ formulation

$$
\partial_{\mu}\left(\rho P^{\mu}\right)=\rho\left[Q_{\mu}, P^{\mu}\right]
$$

Still a complicated non-linear system for $P_{ \pm} \ldots$ \Rightarrow Try to find a linear system related to it (Lax pair).

Integrability (I)

Go back to ‘Ehlers’ formulation

$$
\partial_{\mu}\left(\rho P^{\mu}\right)=\rho\left[Q_{\mu}, P^{\mu}\right]
$$

Still a complicated non-linear system for $P_{ \pm} \ldots$ \Rightarrow Try to find a linear system related to it (Lax pair).

Example: Consider linear matrix equations

$$
\partial_{\mu} A \cdot A^{-1} \quad=M_{\mu}
$$

Integrability (I)

Go back to 'Ehlers’ formulation

$$
\partial_{\mu}\left(\rho P^{\mu}\right)=\rho\left[Q_{\mu}, P^{\mu}\right]
$$

Still a complicated non-linear system for $P_{ \pm} \ldots$ \Rightarrow Try to find a linear system related to it (Lax pair).

Example: Consider linear matrix equations

$$
\partial_{\mu} A \cdot A^{-1} \quad=M_{\mu}
$$

Compatibility $\partial_{\mu} \partial_{\nu} A=\partial_{\nu} \partial_{\mu} A$ implies non-linear

$$
\partial_{\mu} M_{\nu}-\partial_{\mu} M_{\nu} \quad=\left[\begin{array}{lll}
M_{\mu} & , M_{\nu} &]
\end{array}\right]
$$

Integrability (I)

Go back to ‘Ehlers’ formulation

$$
\partial_{\mu}\left(\rho P^{\mu}\right)=\rho\left[Q_{\mu}, P^{\mu}\right]
$$

Still a complicated non-linear system for $P_{ \pm} \ldots$ \Rightarrow Try to find a linear system related to it (Lax pair).

Example: Consider linear matrix equations

$$
\partial_{\mu} A(t) \cdot A^{-1}(t)=M_{\mu}(t)
$$

Compatibility $\partial_{\mu} \partial_{\nu} A=\partial_{\nu} \partial_{\mu} A$ implies non-linear

$$
\partial_{\mu} M_{\nu}(t)-\partial_{\mu} M_{\nu}(t)=\left[M_{\mu}(t), M_{\nu}(t)\right]
$$

Often useful to introduce spectral parameter t into the problem (complex analysis and spectrum of conserved quantities).

Integrability (II)

Repeat for non-linear Einstein equation

$$
\left.\partial_{\mu}(\rho)_{\text {complicates matters! }}^{\mu}\right)=\rho\left[Q_{\mu}, P^{\mu}\right]
$$

Integrability (II)

Repeat for non-linear Einstein equation

$$
\left.\partial_{\mu}(\rho)^{\mu}\right)=\rho\left[Q_{\mu}, P^{\mu}\right]
$$

Integrability (II)

Repeat for non-linear Einstein equation

$$
\partial_{\mu}(\rho \underbrace{\mu}_{\text {complicates matters! }})=\rho\left[Q_{\mu}, P^{\mu}\right]
$$

makes t space-time (ρ, z) dependent
Linear system for gravity [Breitenlohner, Maison 1985]

$$
\partial_{ \pm} \mathcal{V}(t) \cdot \mathcal{V}(t)^{-1}=\frac{1 \mp i t}{1 \pm i t} P_{ \pm}+Q_{ \pm}
$$

Compatibility yields Einstein equation iff

$$
t^{-1} \partial_{ \pm} t=\frac{1 \mp i t}{1 \pm i t} \rho^{-1} \partial_{ \pm} \rho
$$

Integrability (II)

Repeat for non-linear Einstein equation

$$
\partial_{\mu}(\rho \underbrace{\mu}_{\text {complicates matters! }})=\rho\left[Q_{\mu}, P^{\mu}\right]
$$

makes t space-time (ρ, z) dependent
Linear system for gravity [Breitenlohner, Maison 1985]

$$
\partial_{ \pm} \mathcal{V}(t) \cdot \mathcal{V}(t)^{-1}=\frac{1 \mp i t}{1 \pm i t} P_{ \pm}+Q_{ \pm}
$$

Compatibility yields Einstein equation iff

$$
t^{2}-\frac{2 t}{\rho}(z-w)-1=0
$$

Integrability (II)

Repeat for non-linear Einstein equation

$$
\partial_{\mu}(\underbrace{}_{\text {complicates matters! }}
$$

makes t space-time (ρ, z) dependent
Linear system for gravity [Breiten1ohner, Maison 1985]

$$
\partial_{ \pm} \mathcal{V}(t) \cdot \mathcal{V}(t)^{-1}=\frac{1 \mp i t}{1 \pm i t} P_{ \pm}+Q_{ \pm}
$$

Compatibility yields Einstein equation iff

$$
t^{2}-\frac{2 t}{\rho}(z-(\circledast)-1=0
$$

$\Rightarrow t$ lives on two-sheeted Riemann surface.

Integrability (III)

Basic objects:

- Vielbein: $\mathcal{V}(t)=V+t V_{(1)}+t^{2} V_{(2)}+\ldots$
- Monodromy matrix: $\mathcal{M}(w)=\mathcal{V}^{T}(-1 / t) \mathcal{V}(t)$

Integrability (III)

Basic objects:

contains physical fields

- Vielbein: $\mathcal{V}(t)=V+t V_{(1)}+t^{2} V_{(2)}+\ldots$
- Monodromy matrix: $\mathcal{M}(w)=\mathcal{V}^{T}(-1 / t) \mathcal{V}(t)$ $\partial_{\mu} \mathcal{M}(w)=0!$

Integrability (III)

Basic objects:
contains physical fields

- Vielbein: $\mathcal{V}(t)=V+t V_{(1)}+t^{2} V_{(2)}+\ldots$
- Monodromy matrix: $\mathcal{M}(w)=\mathcal{V}^{T}(-1 / t) \mathcal{V}(t)$. ! $\begin{aligned} & \partial_{\mu} \mathcal{M}(w)=0 \text { ! }\end{aligned}$

Group theoretic structure

- Transition $V \in S L(2, \mathbb{R}) \rightarrow \mathcal{V}(t)$ related to $S L(2, \mathbb{R})$ loop group; in fact whole affine Kac-Moody group [Julia 1980]

Integrability (III)

Basic objects:
contains physical fields

- Vielbein: $\mathcal{V}(t)=\left(V+t V_{(1)}+t^{2} V_{(2)}+\ldots\right.$
- Monodromy matrix: $\begin{aligned} \mathcal{M}(w)=\mathcal{V}^{T}(-1 / t) \mathcal{V}(t) \\ \partial_{\mu} \mathcal{M}(w)=0 \text { ! }\end{aligned}$

Group theoretic structure

- Transition $V \in S L(2, \mathbb{R}) \rightarrow \mathcal{V}(t)$ related to $S L(2, \mathbb{R})$ loop group; in fact whole affine Kac-Moody group (Juuia 1980]
- Action of KM element $g(w)$ by $\mathcal{V}(t) \rightarrow k(t) \mathcal{V}(t) g(w)$. 'Local' $k(t)$ to restore Taylor series in t for $\mathcal{V}(t)$

Integrability (III)

Basic objects: contains physical fields

- Vielbein: $\mathcal{V}(t)=\left(V+t V_{(1)}+t^{2} V_{(2)}+\ldots\right.$

Group theoretic structure

- Transition $V \in S L(2, \mathbb{R}) \rightarrow \mathcal{V}(t)$ related to $S L(2, \mathbb{R})$ loop group; in fact whole affine Kac-Moody group [Julia 1980]
- Action of KM element $g(w)$ by $\mathcal{V}(t) \rightarrow k(t) \mathcal{V}(t) g(w)$. 'Local' $k(t)$ to restore Taylor series in t for $\mathcal{V}(t)$
- Chevalley involution of KM is $\tau(\mathcal{V}(t))=\mathcal{V}^{T}(-1 / t)$

Integrability (III)

Basic objects: contains physical fields

- Vielbein: $\mathcal{V}(t)=\left(V+t V_{(1)}+t^{2} V_{(2)}+\ldots\right.$
- Monodromy matrix: $\mathcal{M}(w)=\mathcal{V}^{T}(-1 / t) \mathcal{V}(t)$
$\partial_{\mu} \mathcal{M}(w)=0!$
Group theoretic structure
- Transition $V \in S L(2, \mathbb{R}) \rightarrow \mathcal{V}(t)$ related to $S L(2, \mathbb{R})$ loop group; in fact whole affine Kac-Moody group (Julia 1980]
- Action of KM element $g(w)$ by $\mathcal{V}(t) \rightarrow k(t) \mathcal{V}(t) g(w)$. 'Local' $k(t)$ to restore Taylor series in t for $\mathcal{V}(t)$
- Chevalley involution of KM is $\tau(\mathcal{V}(t))=\mathcal{V}^{T}(-1 / t)$
- ∞-ly many conserved quantities from global KM action

Integrability (IV)

These properties are hallmarks of an integrable system.
$\Rightarrow \underline{\text { Gravity reduced to } D=2 \text { is integrable! }}$
Similar results for many other (super-)gravities [Breiten1ohner,
Gibbons, Maison; Julia; Nicolai; KKV]

Integrability (IV)

These properties are hallmarks of an integrable system.
$\Rightarrow \underline{\text { Gravity reduced to } D=2 \text { is integrable! }}$
Similar results for many other (super-)gravities [Breiten1ohner,
Gibbons, Maison; Julia; Nicolai; KKV]
Formally nice, but have we gained anything?

Integrability (IV)

These properties are hallmarks of an integrable system.
$\Rightarrow \underline{\text { Gravity reduced to } D=2 \text { is integrable! }}$
Similar results for many other (super-)gravities [Breiten1ohner,
Gibbons, Maison; Julia; Nicolai; KKV]
Formally nice, but have we gained anything?
Many techniques developed for integrable models:

- Inverse scattering method
- Bäcklund transformations
\Rightarrow Use integrability to construct solutions of gravity!

Solution generation (I)

Generating $\mathcal{V}(t)$ and monodromy $\mathcal{M}(w)=\mathcal{V}^{T}(-1 / t) \mathcal{V}(t)$.

Solution generation (I)

Generating $\mathcal{V}(t)$ and monodromy $\mathcal{M}(w)=\mathcal{V}^{T}(-1 / t) \mathcal{V}(t)$. Sketch of generating technique $V \rightarrow V^{\text {new }}$ with affine $g(w)$

$$
V \quad \rightarrow \mathcal{V}(t) \quad \rightarrow \quad \mathcal{M}(w)
$$

Seed solution

$$
\downarrow \begin{gathered}
\text { Group transformation } \\
\mathcal{M}^{\text {new }}(w)=g^{T}(w) \mathcal{M}(w) g(w)
\end{gathered}
$$

$$
V^{\text {new }} \leftarrow \mathcal{V}^{\text {new }}(t) \leftarrow \mathcal{M}^{\text {new }}(w)
$$

Solution generation (I)

Generating $\mathcal{V}(t)$ and monodromy $\mathcal{M}(w)=\mathcal{V}^{T}(-1 / t) \mathcal{V}(t)$.
Sketch of generating technique $V \rightarrow V^{\text {new }}$ with affine $g(w)$

$$
V \quad \rightarrow \mathcal{V}(t) \quad \rightarrow \quad \mathcal{M}(w)
$$

Seed solution

$$
\begin{gathered}
\text { Group transformation } \\
\mathcal{M}^{\text {new }}(w)=g^{T}(w) \mathcal{M}(w) g(w)
\end{gathered}
$$

$$
V^{\text {new }} \leftarrow \mathcal{V}^{\text {new }}(t) \leftarrow \mathcal{M}^{\text {new }}(w)
$$

Recall: $\mathcal{V}(t) \rightarrow \mathcal{V}^{\text {new }}(t)=k(t) \mathcal{V}(t) g(w)$. Working with $\mathcal{M}(w)$ avoids $k(t)$.

Solution generation (I)

Generating $\mathcal{V}(t)$ and monodromy $\mathcal{M}(w)=\mathcal{V}^{T}(-1 / t) \mathcal{V}(t)$.
Sketch of generating technique $V \rightarrow V^{\text {new }}$ with affine $g(w)$

$$
V \quad \rightarrow \mathcal{V}(t) \quad \rightarrow \quad \mathcal{M}(w)
$$

Seed solution

$$
\begin{gathered}
\text { Group transformation } \\
\mathcal{M}^{\text {new }}(w)=g^{T}(w) \mathcal{M}(w) g(w)
\end{gathered}
$$

$$
V^{\text {new }} \leftarrow \mathcal{V}^{\text {new }}(t) \underset{\mathcal{J}}{\leftarrow} \mathcal{M}^{\text {new }}(w)
$$

Recall: $\mathcal{V}(t) \rightarrow \mathcal{V}^{v w}(t)=k(t) \mathcal{V}(t) g(w)$. Working with $\mathcal{M}(w)$ avoids $k(t)$.

Hard step: Factorisation of $\mathcal{M}^{\text {new }}(w)$ into $\mathcal{V}^{\text {new }}(t)$ \Rightarrow Riemann-Hilbert problem

Solution generation (II)

Restrict attention to soliton sector: [BZ=Belinski-Zakharov 1978]
$\mathcal{M}^{\text {new }}(w)$ is meromorphic with simple poles in w and rank one residues.

Solution generation (II)

Restrict attention to soliton sector: [BZ=Belinski-Zakharov 1978]
$\mathcal{M}^{\text {new }}(w)$ is meromorphic with simple poles in w and rank one residues.

Includes many interesting solutions.

No pole

Two poles

Solution generation (III)

$D=4$ gravity: Form of $\mathcal{M}(w)$ [drop ${ }^{\text {new }}$]

$$
\mathcal{M}(w)=\mathbb{1}+\sum_{k=1}^{N} \frac{A_{k}}{w-w_{k}}
$$

with

- $\mathcal{M}(w) \in S L(2, \mathbb{R})$ and symmetric
- N : number of solitons
- Residue A_{k} of rank one and symmetric

Solution generation (III)

$D=4$ gravity: Form of $\mathcal{M}(w)$ [drop $\left.{ }^{\text {new }}\right]$

$$
\mathcal{M}(w)=\mathbb{1}+\sum_{k=1}^{N} \frac{A_{k}}{w-w_{k}}
$$

with

- $\mathcal{M}(w) \in S L(2, \mathbb{R})$ and symmetric
- N : number of solitons
- Residue A_{k} of rank one and symmetric

In this case, problem becomes an exercise in linear algebra!
[Belinski, Zakharov; Breitenlohner, Maison]

Solution generation (IV)

$$
\mathcal{M}(w)=\mathbb{1}+\sum_{k=1}^{N} \frac{A_{k}}{w-w_{k}} \quad \Rightarrow \quad \mathcal{M}(w)^{-1}=\mathbb{1}-\sum_{k=1}^{N} \frac{B_{k}}{w-w_{k}}
$$

Parametrise (rank one!)

$$
A_{k}=\alpha_{k} a_{k} a_{k}^{T}, \quad B_{k}=\beta_{k} b_{k} b_{k}^{T}
$$

- a_{k}, b_{k} constant vectors (like 'BZ vectors')
- α_{k}, β_{k} normalisations

Solution generation (IV)

$$
\mathcal{M}(w)=\mathbb{1}+\sum_{k=1}^{N} \frac{A_{k}}{w-w_{k}} \quad \Rightarrow \quad \mathcal{M}(w)^{-1}=\mathbb{1}-\sum_{k=1}^{N} \frac{B_{k}}{w-w_{k}}
$$

Parametrise (rank one!)

$$
A_{k}=\alpha_{k} a_{k} a_{k}^{T}, \quad B_{k}=\beta_{k} b_{k} b_{k}^{T}
$$

- a_{k}, b_{k} constant vectors (like 'BZ vectors')
- α_{k}, β_{k} normalisations

To obtain factorisation $\mathcal{M}(w)=\mathcal{V}^{T}(-1 / t) \mathcal{V}(t)$

1. Make similar factorized ansatz for $\mathcal{V}(t)$
2. Analyse carefully residues of $\mathcal{M}(w) \mathcal{M}^{-1}(w)$ etc.

Solution generation (V)

Upshot is

$$
M=V^{T} V=\mathbb{1}+\sum_{k, l=1}^{N} b_{k} t_{k}^{-1}\left(\Gamma^{-1}\right)_{k l} a_{l}^{T}
$$

with

$$
\begin{aligned}
\Gamma_{k l} & =\left\{\begin{array}{lll}
\frac{\gamma_{k}}{t_{k_{T}}} & \text { for } & k=l \\
\frac{a_{k} b_{l}}{t_{k}-t_{l}} & \text { for } & k \neq l
\end{array}\right. \\
t_{k} & =\frac{1}{\rho}\left(\left(z-w_{k}\right)+\sqrt{\left(z-w_{k}\right)^{2}+\rho^{2}}\right)
\end{aligned}
$$

Conformal factor also simple: $\quad f^{2}=c \operatorname{det}(\Gamma) \prod_{k=1}^{N}\left(\nu_{k} t_{k}\right)$
[Expressions for γ_{k} and ν_{k} slightly more involved \Rightarrow didn't fit.]

Solution examples

Schwarzschild [Breitenlohner, Maison]

$$
\mathcal{M}(w)=\left(\begin{array}{cc}
\frac{w+m}{w-m} & 0 \\
0 & \frac{w-m}{w+m}
\end{array}\right)
$$

Kerr-NUT ${ }^{\text {[kкvı }] ~}$
$\mathcal{M}(w)=\frac{1}{w^{2}-c^{2}}\left(\begin{array}{cc}(w+m)^{2}+(n+a)^{2} & 2(a m-w n) \\ 2(a m-w n) & (w-m)^{2}+(n-a)^{2}\end{array}\right)$
with $c^{2}=m^{2}+n^{2}-a^{2}$.

Other theories

$D=4$ gravity well-studied, also within inverse scattering approach of Belinski and Zakharov.

Other theories

$D=4$ gravity well-studied, also within inverse scattering approach of Belinski and Zakharov.

- BZ inverse scattering approach not phrased group-theoretically, secretly strongly modelled on $G L(2, \mathbb{R})$. Does not generalise immediately to other theories ([pomeransky] for $D=5$ gravity).

Other theories

$D=4$ gravity well-studied, also within inverse scattering approach of Belinski and Zakharov.

- BZ inverse scattering approach not phrased group-theoretically, secretly strongly modelled on $G L(2, \mathbb{R})$. Does not generalise immediately to other theories ([pomeransky] for $D=5$ gravity).
- Formalism above has the potential to generalise to other groups/theories. E.g.
E_{8} for maximal supergravity
SO $(4,4)$ for STU-gravity
G_{2} for minimal $D=5$ supergravity

Other theories

$D=4$ gravity well-studied, also within inverse scattering approach of Belinski and Zakharov.

- BZ inverse scattering approach not phrased group-theoretically, secretly strongly modelled on $G L(2, \mathbb{R})$. Does not generalise immediately to other theories ([pomeransky] for $D=5$ gravity).
- Formalism above has the potential to generalise to other groups/theories. E.g.
E_{8} for maximal supergravity
SO $(4,4)$ for STU-gravity
G_{2} for minimal $D=5$ supergravity
- However, some important technical differences arise...

STU model (I)

$\mathcal{N}=2$ supergravity in $D=4$ coupled to three vector multiplets with cubic prepotential [Cremmer et al. 1985]

$$
\mathcal{F}=-\frac{X^{1} X^{2} X^{3}}{X^{0}}
$$

Dimensionally reduce to $D=3$. Bosonic fields $g_{m n}^{(3)}$ and V.
V now in $S O(4,4) / S O(2,2) \times S O(2,2)$, total of 16 scalars. Otherwise set-up identical to before.

STU model (I)

$\mathcal{N}=2$ supergravity in $D=4$ coupled to three vector multiplets with cubic prepotential [Cremmer et al. 1985]

$$
\mathcal{F}=-\frac{X^{1} X^{2} X^{3}}{X^{0}}
$$

Dimensionally reduce to $D=3$. Bosonic fields $g_{m n}^{(3)}$ and V.
V now in $S O(4,4) / S O(2,2) \times S O(2,2)$, total of 16 scalars. Otherwise set-up identical to before.

Technical differences in

- Rank of residue of $\mathcal{M}(w)$
- Properties of $S O(4,4)$

STU model (II)

Example: 4D Kerr [kkv2]

Two solitons at $w= \pm c=\sqrt{m^{2}-a^{2}}$. Residues of rank two!

STU model (II)

Example: 4D Kerr [kkv2]

$$
\mathcal{M}(w)=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{a^{2}+(w-m)^{2}}{w^{2}-c^{2}} & 0 & 0 & 0 & 0 & -\frac{2 a m}{w^{2}-c^{2}} \\
0 & 0 & 0 & \frac{a^{2}+(w-m)^{2}}{w^{2}-c^{2}} & 0 & 0 & \frac{2 a m}{w^{2}-c^{2}} & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \frac{2 a m}{w^{2}-c^{2}} & 0 & 0 & \frac{a^{2}+(m+w)^{2}}{w^{2}-c^{2}} & 0 \\
0 & 0 & -\frac{2 a m}{w^{2}-c^{2}} & 0 & 0 & 0 & 0 & \frac{a^{2}+(m+w)^{2}}{w^{2}-c^{2}}
\end{array}\right)
$$

Two solitons at $w= \pm c=\sqrt{m^{2}-a^{2}}$. Residues of rank two! Need to generalise formalism for solution generation.

Generalised solution generation

[KKV2]

rank one	rank r
soliton $w_{k} ; k=1, \ldots N$	soliton $w_{k} ; k=1, \ldots N$
vectors a_{k}	vectors $a_{k}^{\alpha} ; \alpha=1, \ldots, r$
matrix $\Gamma_{k l}$	matrix $\Gamma_{k l}^{\alpha \beta}$
conf. $f \propto \operatorname{det}\left(\Gamma_{k l}\right) \prod_{k=1}^{N} \tilde{t}_{k}$	$f \propto \operatorname{det}\left(\Gamma_{k l}^{\alpha \beta}\right)\left(\prod_{k=1}^{N} \tilde{t}_{k}\right)^{r}$

New formula for asymptotically 4D solution roughly

$$
M=\mathbb{1}+\sum_{k, l=1}^{N} \sum_{\alpha, \beta=1}^{r} b_{k}^{\alpha} t_{k}^{-1}\left(\Gamma^{-1}\right)_{k l}^{\alpha \beta}\left(a_{l}^{\beta}\right)^{T}
$$

Generalised solution generation

rank one	rank r
soliton $w_{k} ; k=1, \ldots N$	soliton $w_{k} ; k=1, \ldots N$
vectors a_{k}	vectors $a_{k}^{\alpha} ; \alpha=1, \ldots, r$
matrix $\Gamma_{k l}$	matrix $\Gamma_{k l}^{\alpha \beta}$
conf. $f \propto \operatorname{det}\left(\Gamma_{k l}\right) \prod_{k=1}^{N} \tilde{t}_{k}$	$f \propto \operatorname{det}\left(\Gamma_{k l}^{\alpha \beta}\right)\left(\prod_{k=1}^{N} \tilde{t}_{k}\right)^{r}$

New formula for asymptotically 4D solution roughly

$$
M=\mathbb{1}+\sum_{k, l=1}^{N} \sum_{\alpha, \beta=1}^{r} b_{k}^{\alpha} t_{k}^{-1}\left(\Gamma^{-1}\right)_{k l}^{\alpha \beta}\left(a_{l}^{\beta}\right)^{T}
$$

[Effectively everything boosted up to an $r N$-dim'l space.]

STU model in various dimensions

STU supergravity can be lifted to $D=5$ and $D=6$.

$$
\mathcal{L}_{(6)}=R-\frac{1}{2}(\partial \Phi)^{2}-\frac{1}{12} e^{-\sqrt{2} \Phi} H_{M N P} H^{M N P}
$$

What about generating black holes in $D>4$?

STU model in various dimensions

STU supergravity can be lifted to $D=5$ and $D=6$.

$$
\mathcal{L}_{(6)}=R-\frac{1}{2}(\partial \Phi)^{2}-\frac{1}{12} e^{-\sqrt{2} \Phi} H_{M N P} H^{M N P}
$$

What about generating black holes in $D>4$?
Important for

- Exploring zoo of higher-dimensional black objects
- Mathur's fuzzball proposal, e.g, understanding the D1-D5-P system.

STU model in various dimensions

STU supergravity can be lifted to $D=5$ and $D=6$.

$$
\mathcal{L}_{(6)}=R-\frac{1}{2}(\partial \Phi)^{2}-\frac{1}{12} e^{-\sqrt{2} \Phi} H_{M N P} H^{M N P}
$$

What about generating black holes in $D>4$?
Important for

- Exploring zoo of higher-dimensional black objects
- Mathur's fuzzball proposal, e.g, understanding the D1-D5-P system.

Example: JMaRT solution [hep-th/0504181]. Smooth non-SUSY 5D solution with two or three e-m charges.

5D asymptotics

Solutions above had 4D-asymptotics and $\lim _{w \rightarrow \infty} \mathcal{M}(w)=\mathbb{1}$
For 5D-asymptotics $\left(\mathbb{R}^{1,4}\right)$ get (see also [Giusto, saxena 2007])

$$
\lim _{w \rightarrow \infty} \mathcal{M}(w)=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)=: Y
$$

Technical changes in inverse scattering procedure: Charging transformations have to preserve these asymptotics but otherwise very similar.

JMaRT from inverse scattering

Original JMaRT construction from over-rotating charged Myers-Perry black hole [cvetič-Youm 96].

Over-rotating in inverse scattering \Longrightarrow complex poles \Longrightarrow complex residues for $S O(4,4) \mathcal{M}(w)$

JMaRT from inverse scattering

Original JMaRT construction from over-rotating charged Myers-Perry black hole [Cvetič-Youm 96].

Over-rotating in inverse scattering \Longrightarrow complex poles \Longrightarrow complex residues for $S O(4,4) \mathcal{M}(w) \Longrightarrow$ not desirable!

JMaRT from inverse scattering

Original JMaRT construction from over-rotating charged Myers-Perry black hole [cvetič-Youm 96].

Over-rotating in inverse scattering \Longrightarrow complex poles \Longrightarrow complex residues for $S O(4,4) \mathcal{M}(w) \Longrightarrow$ not desirable!

Way around: Use embedding into Lorentzian 6D and use Euclidean 5D solution

$$
d s_{6}^{2}=-d t^{2}+d s_{5}^{2}
$$

In Euclidean 5D have instanton similar to over-rotating MP but with real poles.

JMaRT from inverse scattering (II)

Strategy

1. Construct 5D instanton from inverse scattering (c real)

$$
\mathcal{M}(w)=Y+\frac{A_{1}}{w-c}+\frac{A_{2}}{w+c}
$$

and lift to Lorentzian 6D
2. Charge up 6D solution with appropriate $S O(4,4)$ element
3. Analyse solution and recognise JMaRT

JMaRT from inverse scattering (II)

Strategy

1. Construct 5D instanton from inverse scattering (c real)

$$
\mathcal{M}(w)=Y+\frac{A_{1}}{w-c}+\frac{A_{2}}{w+c}
$$

and lift to Lorentzian 6D
2. Charge up 6D solution with appropriate $S O(4,4)$ element
3. Analyse solution and recognise JMaRT

Strategy works but details are a bit lengthy \Longrightarrow [ккv3].

Outlook

- 'BM method' intertwines nicely with finite group methods. Wide applicability
- Fermions can be included ${ }_{\text {[Nicolai 1990] }}$
- Characterisation of physically interesting solutions in terms of group data?
- Study of thermodynamics?
- Useful for systematic study of zoo of solutions?
- Relation to 'subtracted geometry' and conformal symmetry?
- Gauged theories?

Outlook

- 'BM method' intertwines nicely with finite group methods. Wide applicability
- Fermions can be included ${ }_{\text {[Nicolai 1990] }}$
- Characterisation of physically interesting solutions in terms of group data?
- Study of thermodynamics?
- Useful for systematic study of zoo of solutions?
- Relation to 'subtracted geometry' and conformal symmetry?
- Gauged theories?

Thank you for your attention!

