

Muon Reconstruction Performance in ATLAS at Run-II

Nathan Bernard University of Massachusetts, Amherst ICNFP 2015

- ATLAS Detector
- Muon Reconstruction
- Muon Reconstruction Efficiency
- Muon Isolation Efficiency
- Muon Momentum Scale and Resolution

Note: All plots in talk are from ATL-COM-MUON-2015-037 except where noted

ATLAS Detector

- Hadronic:
 - Iron and scintillator tiles for $|\eta| < 1.5$
 - LAr for larger η.
- Muon momentum measurement corrected for energy loss.
- Calo-tagged muons use energy deposits to identify muons.

- Tracking for $|\eta| < 2.7$
- Barrel ($|\eta| < 1.05$) and two endcap sections.
- Three superconducting air-core toroids
 - Bending integral of 2.5 Tm in barrel
 - Bending integral up to 6 Tm in the end-caps.

Muon Spectrometer

Trigger Technologies

- Resistive Plate chambers (RPC)
 - Three doublet layers
 - |η| < 1.05
- Thin Gap Chambers (TGC)
 - Three triplet and doublet layers
 - $1.0 < |\eta| < 2.4$

Precision Technologies

- Monitored Drift Tubes (MDT)
 - Three layers each in barrel and endcap
 - \bullet Give 6-8 η measurements per chamber
 - |η| < 2.7
- Cathode Strip Chambers (CSC)
 - Inner layer with $|\eta| > 2$

LSI Changes

- Added last missing chambers in transition region ($1.0 < |\eta| < 1.4)$
- Four RPC-equipped MDT chambers were installed in the feet region at the base of detector. (elevator chambers)
- Some of the new MDT chambers built with smaller radius allowing to cope with higher rates.

Combined (CB)

- ID track + MS track
- 96% of muons

Standalone (SA)

- MS track only
- 2.5 < |η| < 2.7

Segment-tagged (ST)

- ID track + MS track segment
- Low Pt and special regions

Calo-tagged (CT)

- ID track + calorimeter energy deposit
- $|\eta| < 0.1$ and $25 < P_T < 100$ GeV

LSI Changes

• CLHEP \rightarrow Eigen for Linear Algebra Libraries has sped up reconstruction.

• Hough transform has been added to identify hit patterns to seed segment finding alg and reduce combinatorics.

• Energy loss calc has been improved with more detailed description of geometry to derive an analytic parameterization of energy loss.

4

Loose

- Maximize the reconstruction efficiency
- Uses all four types
- Optimized for reconstructing Higgs boson candidates in four lepton final state.
- CT and ST are restricted to $|\eta| < 0.1$ (MS is only partially instructed for cabling and services)
- SA muons are deployed between 2.5 < $|\eta|$ < 2.7 to extend acceptance outside the ID geometrical coverage.

Medium

- Default
- Minimize systematic uncertainties with reconstruction and calibration.
- SA: \geq 3 prec hits in each of three layers of MDT and are employed only in 2.5 < $|\eta|$ < 2.7 region.
- CB: \geq 3 hits on at least two layers of MDT except for $|\eta| < 0.1$ region where \geq 3 in single MDT layer allowed.
- I/p measurements in ID and MS must be compatible.

Tight

- Minimize rate of fake muons
- CB with tighter cuts on 1/p compatibility.
- Extra cut on normalized chi-squared combined track fit.

$High \ P_T$

- Maximize resolution for $P_T > 100 \text{ GeV}$
- CB Medium, \geq 3 MDT hits
- Specific regions of MS where alignment is preliminary are vetoed as precaution (i.e. new chambers)

- Probe is successful reconstructed if reco muon is found within ΔR of 0.05 around the probe track
- Measured Efficiencies are corrected for the efficiency of ID track reconstruction, using SA MS tracks as probe muons.
- Yields 50k (750k) $Z \rightarrow \mu \mu$ (J/ $\psi \rightarrow \mu \mu$) events
- SF formed to correct simulation.
- Systematic uncertainty dominated by:
 - the normalization of background extracted from data
 - possible dependence of SF on muon charge.

Muon Reconstruction Efficiency

Track-based isolation (P_T^{varcone30})

- Sum of the transverse momenta of the tracks in a cone of $\Delta R = 10$ GeV/P_{T,µ} around the muon excluding the muon-track itself with maximum cone size = 0.3
- \bullet The P_{T} dependence improves performance for muons from boosted decays.
- Tracks considered in sum must:
 - originate from PV associated to muon track
 - $P_T > I GeV$
 - At least 9 (11) silicon hits if in $|\eta| < (>)$ 1.65
 - d₀ < 3 mm.

Calorimeter-based isolation (E_T^{topocone20})

- Sum of energies of the topological clusters around muon in a cone of radius ΔR = 0.2
- Clusters within a smaller $\Delta R = 0.1$ are excluded to remove energy deposit from muon itself.
- Sum is corrected for pileup using ambient energy density computed event by event.

Note: Isolation studies performed on $Z \rightarrow \mu \mu$ decays

 $E_{T}^{topocone20}/p_{T}$

ICNFP15

- Isolation SFs defined as ratio between data/MC for five sets of isolation working points. (Each tuned to needs of physics analyses.)
- •Track based isolation WP is defined by cuts on the relative track-based iso var.
- The other WP are defined by cuts applied separately on both relative iso variables.
- All cuts are tuned as a function of the η and P_T of the muon to obtain uniform performance.

• Systematic uncertainties on SF estimated by varying the selection criteria and background contribution within the uncertainties (cut on Z mass window, isolation of tag muon, min quality of the probe, dR between two muons and the bkgd contribution.)

• Largest arises from mass window cut in low Pt region (more bkgd) whereas high Pt is dominated by stat and systematics due to condition of dR between muons.

ICNFP15

$$p_{\mathrm{T}} = \frac{\widetilde{p_{\mathrm{T}}} + (s_0 + s_1 \cdot \widetilde{p_{\mathrm{T}}})}{1 + \mathcal{N}(\alpha; 0, 1) \cdot \sqrt{(\Delta r_0 / \widetilde{p_{\mathrm{T}}})^2 + \Delta r_1^2 + (\Delta r_2 \cdot \widetilde{p_{\mathrm{T}}})^2}}$$

- α is a random variable distributed according to a normal distribution $\mathcal{N}(\mu=0,\sigma=1)$.
- Momentum scale:
 - s₀ corrects for energy loss in material, (MS only)
 - s1 corrects for radial distortions or mismodeling of magnetic field integral.
- Momentum resolution residual dependence.
 - Δr_0 energy loss fluctuations in traversed material (MS only)
 - Δr_1 models multiple scattering, local magnetic field distortions, and local radial distortions.
 - Δr_2 models the instrinsic resolution effects and residual detector misalignment.
- Corrections are derived separately for the ID and MS muon momentum measurements.

$$p_{\mathrm{T}}^{\mathrm{CB}} = f \cdot p_{\mathrm{T}}^{\mathrm{ID}} + (1 - f) \cdot p_{\mathrm{T}}^{\mathrm{MS}}$$

• f is derived from the relative weight of each momentum measurement to the CB measurement of P_T

Muon Momentum Scale and Resolution

- Momentum corrections are extracted by a template-based likelihood fit from $Z \rightarrow \mu\mu$ and J/ $\psi \rightarrow \mu\mu$ decays.
- Dimuon pair selection:
 - Two opposite charge muons
 - |η| < 2.5
 - Medium
- Muons from $Z \rightarrow \mu \mu$ dominate the high P_T region (> 20 GeV)
 - 75 GeV < m_{µµ} < 105 GeV
- Muons from J/ $\psi \rightarrow \mu\mu$ provide calibration for lower momenta (5 GeV < P_T < 20 GeV)
 - 2.4 GeV < $m_{\mu\mu}$ < 3.6 GeV
- Bulk of corrections are determined from 5 fb⁻¹ of 2012 data reconstructed with 2015 software.
- Residual data-to-simulation mismodelling between 2012 and 2015 is corrected using 85 pb⁻¹ of 2015 pp collisions.
- Corrections validated by fitting the invariant mass spectrum of muons from J/ ψ and Z decays to a parametric PDF and then comparing the fits of data and corrected MC.
- Mass spectrum modeled by a convolution of many PDFs

Muon Momentum Scale and Resolution

Crystal Ball

• Gaussian component estimates detector resolution.

• Exponential component approximates the residual energy loss of the muon from traversing material.

Breit-wigner

- Accounts for large width of Z
- Mean fixed to Crystal Ball mean
- Width fixed to Z width

Gaussian

- Accounts for residual resolution effects
- Amplitude and resolution estimated from sim as a function of leading muon η .

Exponential

• Used with $J/\psi \rightarrow \mu\mu$ decays to account for non-negligable fraction of combinatorial background.

2012 vs 2015

2.5

 $\eta(\mu^{\text{lead}})$

2

