CERN TH String Theory Seminar November 11, 2014

Holographic aspects of gravity in 4 and 3 dimensions

Glenn Barnich

Physique théorique et mathématique
Université Libre de Bruxelles \& International Solvay Institutes

Overview

Symmetry groups of asymptotically AdS and flat spacetimes

with C.Troessaert, P.H. Lambert

Current algebra of 4d flat case
with C.Troessaert

New results in 3 dimensions: 3d gravity as group theory
with A. Gomberoff, H.A. Gonzalez, B. Oblak

Main idea : asymptotic symmetries = residual gauge symmetries

BMS ansatz

$$
\begin{gathered}
g^{\mu \nu}=\left(\begin{array}{ccc}
0 & -e^{-2 \beta} & 0 \\
-e^{-2 \beta} & -\frac{V}{r} e^{-2 \beta} & -U^{B} e^{-2 \beta} \\
0 & -U^{A} e^{-2 \beta} & g^{A B}
\end{array}\right) \\
u
\end{gathered}
$$

null coordinate
d-I gauge conditions $\quad g^{u u}=0=g^{u A}$
determinant condition $\quad \operatorname{det} g_{A B}=r^{2(d-2)} \operatorname{det} \bar{\gamma}_{A B} \quad \bar{\gamma}_{A B} d x^{A} d x^{B}=e^{2 \varphi} d^{d-2} \Omega$ conformal to metric on unit d-2 sphere
fix diffeomorphism invariance in d dimensions

Asymptotic symmetries Minkowski and AdS backgrounds

backgrounds $\quad \beta=0=U^{A}=\varphi, \quad \frac{V}{r}=-\frac{r^{2}}{l^{2}}-1$
Minkowski d $\quad l^{-1}=0 \quad t=u+r \quad d s^{2}=-d t^{2}+d r^{2}+r^{2} d^{d-2} \Omega$
AdS d $\quad t=u+l \arctan \frac{r}{l} \quad d s^{2}=-\left(\frac{r^{2}}{l^{2}}+1\right) d t^{2}+\left(\frac{r^{2}}{l^{2}}+1\right)^{-1} d r^{2}+r^{2} d^{d-2} \Omega$
asymptotics $\quad r \rightarrow \infty, \quad u, x^{A}$ fixed

Asymptotic symmetries Residual gauge transformations

fall-off conditions

$$
\left\{\begin{array}{l}
\beta=o(1) \\
U^{A}=o(1) \\
g_{A B} d x^{A} d x^{B}=r^{2} \bar{\gamma}_{A B} d x^{A} d x^{B}+o\left(r^{2}\right) \\
\frac{V}{r}=-\frac{r^{2}}{l^{2}}+o\left(r^{2}\right)
\end{array}\right.
$$

leave class of spacetimes invariant
exact conditions $\quad\left\{\begin{array}{l}\mathcal{L}_{\xi} g_{r r}=0 \\ \mathcal{L}_{\xi} g_{r A}=0 \\ g^{A B} \mathcal{L}_{\xi} g_{A B}=0\end{array} \Rightarrow\left\{\begin{array}{l}\xi^{u}=F \\ \xi^{A}=Y^{A}-\partial_{B} F \int_{r}^{\infty} d r^{\prime} e^{2 \beta} g^{A B} \\ \xi^{r}=-\frac{r}{d-2}\left(\bar{D}_{B} \xi^{B}-\partial_{B} \xi^{u} U^{B}\right)\end{array}\right.\right.$
fix r dependence up to integration functions

$$
F=F\left(u, x^{B}\right), \quad Y^{A}=Y^{A}\left(u, x^{B}\right)
$$

asymptotic conditions $\left\{\begin{array}{l}\mathcal{L}_{\xi} g_{u r}=o(1) \\ \mathcal{L}_{\xi} g_{u A}=o\left(r^{2}\right) \\ \mathcal{L}_{\xi} g_{u u}=o\left(r^{2}\right) \\ \mathcal{L}_{\xi} g_{A B}=o\left(r^{2}\right)\end{array} \Rightarrow\left\{\begin{array}{l}F=f+\int_{0}^{u} d u^{\prime} \bar{D}_{B} Y^{B} \\ Y^{A}=y^{A}+l^{-2} \int_{0}^{u} d u^{\prime} \bar{\gamma}^{A B} \partial_{B} F\end{array}\right.\right.$
fix u dependence up to integration functions

$$
f=f\left(x^{B}\right), \quad y^{A}=y^{A}\left(x^{B}\right)
$$

conformal Killing equation d-2 sphere

$$
\mathcal{L}_{Y} \bar{\gamma}_{A B}=\frac{2}{d-2} \bar{D}_{B} Y^{B} \bar{\gamma}_{A B}
$$

AdS $d \geq 4 \quad \mathfrak{s o}(d-1,2) \quad$ only exact Killing vectors of background
flat $\quad d \geq 5 \quad \mathfrak{s o}(d-1,1) \ltimes S T$
$\mathrm{cKv} \quad$ no constraint on f , angle dependent supertranslations stronger fall-off's $\Rightarrow \mathfrak{i} \operatorname{so}(d-1,1) \quad$ Poincaré algebra

AdS $d=3$ no constraint from cKe $2 d$ conformal algebra
flat $\quad d=3 \quad \operatorname{Vect}\left(S^{1}\right) \ltimes_{\mathrm{ad}} \operatorname{Vect}\left(S^{1}\right)_{\mathrm{ab}} \quad$ contraction of 2d conformal algebra
flat $\quad d=4$

$$
\mathfrak{s o}(3,1) \ltimes S T=\mathfrak{b} \mathfrak{m} \mathfrak{s}_{4}^{\text {glob }}
$$

globally well-defined BMS algebra

$$
\zeta=e^{i \phi} \cot \frac{\theta}{2} \quad d \theta^{2}+\sin ^{2} \theta d \phi^{2}=P^{-2} d \zeta d \bar{\zeta}, \quad P(\zeta, \bar{\zeta})=\frac{1}{2}(1+\zeta \bar{\zeta})
$$

CFT choice : allow for meromorphic functions on the Riemann sphere
solution to conformal Killing equation $\quad Y^{\zeta}=Y^{\zeta}(\zeta), \quad Y^{\bar{\zeta}}=Y^{\bar{\zeta}}(\bar{\zeta})$

$$
l_{n}=-\zeta^{n+1} \frac{\partial}{\partial \zeta}, \quad \bar{l}_{n}=-\bar{\zeta}^{n+1} \frac{\partial}{\partial \bar{\zeta}}, \quad n \in \mathbb{Z} \quad \text { superrotations }
$$

generators

$$
T_{m, n}=\zeta^{m} \bar{\zeta}^{n}, \quad m, n \in \mathbb{Z}
$$

supertranslations
commutation relations

$$
\begin{aligned}
& {\left[l_{m}, l_{n}\right]=(m-n) l_{m+n}, \quad\left[\bar{l}_{m}, \bar{l}_{n}\right]=(m-n) \bar{l}_{m+n}, \quad\left[l_{m}, \bar{l}_{n}\right]=0} \\
& {\left[l_{l}, T_{m, n}\right]=\left(\frac{l+1}{2}-m\right) T_{m+l, n}, \quad\left[\bar{l}_{l}, T_{m, n}\right]=\left(\frac{l+1}{2}-n\right) T_{m, n+l}}
\end{aligned}
$$

Poincaré subalgebra $\quad l_{-1}, l_{0}, l_{1}, \quad \bar{l}_{-1}, \bar{l}_{0}, \bar{l}_{1}, \quad T_{0,0}, T_{1,0}, T_{0,1}, T_{1,1}$,

4d gravity is dual to an extended conformal field theory
Proposal : should be relevant for relevant for gravitational S-matrix
scattering theory between \mathscr{I}^{-}and \mathscr{I}^{+}

action on gravitational phase space
particles as UIRREPS for BMS4

> McCarthy I972: no continous spin representations for $B M S 4{ }^{\text {glob }}$

Strominger et al.:Ward identities for soft photon and graviton theorems

Gervais \& Zwanziger 1980

$$
\begin{aligned}
& A_{\mu}^{\text {as }}(x) \equiv \lim _{\lambda \rightarrow \infty} \lambda A_{\mu}(\lambda x), \\
& \mathscr{A}_{\mu}(x)=(2 \pi)^{-3 / 2} \int[\exp (\mathrm{i} k \cdot x) \alpha(\omega, \hat{k})+\text { h.c. }](2 \omega)^{-1} \mathrm{~d}^{3} k, \quad \omega=|k|, \quad \hat{k}=k / \omega .
\end{aligned}
$$

After rewriting \mathcal{A}_{μ} as

$$
\mathscr{A}_{\mu}(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{2}(2 \pi)^{-3 / 2} \int \mathrm{~d} \hat{k} \int_{0}^{\infty} \mathrm{d} \omega[\omega \alpha(\omega, \hat{k}) \exp [\mathrm{i} \omega(\hat{\boldsymbol{k}} \cdot x-t)-\epsilon t]+\text { h.c. }],
$$

one obtains by standard arguments

$$
\begin{aligned}
& \lim _{\lambda \rightarrow \infty} \lambda \not A_{\mu}(\lambda x)=\frac{1}{2} \int \frac{\mathrm{~d} \hat{k}}{(2 \pi)^{3 / 2}}\left[\frac{\beta(\hat{\boldsymbol{k}})}{\epsilon+\mathrm{i}(t-\hat{\boldsymbol{k}} \cdot x)}+\text { h.c. }\right], \\
& \beta(\hat{\boldsymbol{k}})=\lim _{\omega \rightarrow 0} \omega \alpha(\omega, \hat{k}) \\
& \ldots
\end{aligned}
$$

In practice, new dynamical variables at infinity come into play
conformally flat metric
covariant derivative

$$
d \bar{s}^{2}=\bar{\gamma}_{A B} d x^{A} d x^{B}=2 P^{-2} d \zeta d \bar{\zeta}
$$

$$
\overline{\mathrm{\partial}} \eta^{s}=P^{1-s} \bar{\partial}\left(P^{s} \eta^{s}\right), \quad \overline{\bar{\jmath}} \eta^{s}=P^{1+s} \partial\left(P^{-s} \eta^{s}\right)
$$

$$
[\overline{\mathrm{\jmath}}, \check{\partial}] \eta^{s}=\frac{s}{2} R \eta^{s}, \quad R=4 P^{2} \partial \bar{\partial} \ln P, \quad R_{S}=2
$$

conformal Killing vectors
spin and conformal weights

$$
\mathcal{Y}=P^{-1} \bar{Y}(\bar{\zeta}), \quad \overline{\mathcal{Y}}=P^{-1} Y(\zeta)
$$

$$
-\delta_{\mathcal{Y}, \overline{\mathcal{Y}} \eta}=\left[\mathcal{Y} \mathrm{\partial}+\overline{\mathcal{Y}} \overline{\mathrm{\delta}}+\frac{s-w}{2} \check{\partial} \mathcal{Y}-\frac{s+w}{2} \overline{\mathrm{\delta}} \overline{\mathcal{Y}}\right] \eta
$$

asymptotic solution space

$$
\chi(u, \zeta, \bar{\zeta})=\left\{\sigma^{0}, \Psi_{2}^{0}, \Psi_{1}^{0},+ \text { c.c. }\right\}
$$

parametrisation of leading part on-shell behaviour of $\quad \frac{V}{r}, U^{A}, \gamma_{A B}$
evolution equations

$$
\dot{\Psi}_{2}^{0}=-ฎ^{2} \dot{\bar{\sigma}}^{0}-\sigma^{0} \ddot{\bar{\sigma}}^{0} \quad \dot{\Psi}_{1}^{0}=ð \Psi_{2}^{0}-2 \sigma^{0} \partial \dot{\bar{\sigma}}^{0}
$$

free u dependence
on-shell constraints

$$
\sigma^{0}(u, \zeta, \bar{\zeta}) \quad \text { news tensor } \quad \dot{\sigma}^{0}(u, \zeta, \bar{\zeta})
$$

$$
\Psi_{2}^{0}-\bar{\Psi}_{2}^{0}=\bar{\delta}^{2} \sigma^{0}-\check{\partial}^{2} \bar{\sigma}^{0}+\dot{\sigma}^{0} \bar{\sigma}^{0}-\sigma^{0} \dot{\bar{\sigma}}^{0}
$$

Current algebra 4d flat Conformal transformations

bms4 transformations

$$
\begin{aligned}
& -\delta_{\xi} \sigma^{0}=\left[f \partial_{u}+\mathcal{Y} \text { व }+\overline{\mathcal{Y} \bar{\partial}}+\frac{3}{2} \text { б } \mathcal{Y}-\frac{1}{2} \overline{\widetilde{\gamma}}\right] \sigma^{0}-\check{\partial}^{2} f, \\
& -\delta_{\xi} \dot{\sigma}^{0}=\left[f \partial_{u}+\mathcal{Y} \partial+\overline{\mathcal{Y}}+2 ð \mathcal{Y}\right] \dot{\sigma}^{0}-\frac{1}{2} \check{ð}^{2} \psi, \\
& -\delta_{\xi} \Psi_{2}^{0}=\left[f \partial_{u}+\mathcal{Y} \check{\partial}+\overline{\mathcal{Y}}+\frac{3}{2} \check{\partial} \mathcal{Y}+\frac{3}{2} \overline{\overline{\partial Y}}\right] \Psi_{2}^{0}-2 ð f \check{\partial} \dot{\bar{\sigma}}^{0},
\end{aligned}
$$

$$
\begin{aligned}
& f=T+\frac{1}{2} u \psi \quad \psi=(\bar{\partial} \mathcal{Y}+\overline{\partial \mathcal{Y}})
\end{aligned}
$$

(field dependent) inhomogeneous pieces, Schwarzian derivatives
Strominger: soft gravitons = Goldstone modes for these transformations
interpretation requires charges, canonical generators for the transformations + Dirac bracket algebra

Problem: ADM type charges for superrotations diverge because of poles on the sphere

$$
L_{m} \rightarrow \infty
$$

Local non integrated version of Ward identities

$$
\begin{aligned}
\partial_{a}^{x}\left\langle J_{Q_{1}}^{a}(x) J_{Q_{2}}^{b}(y) X(z)\right\rangle & =i \delta(x-y)\left\langle J_{\left[Q_{1}, Q_{2}\right]}^{b}(y) X(z)\right. \\
& +i \delta(x-z)\left\langle J_{Q_{2}}^{b}(y) \delta_{Q_{2}} X(z)\right\rangle
\end{aligned}
$$

classical version $\quad \delta_{Q_{1}}: \quad d J_{Q_{2}}=Q_{2}^{i} \frac{\delta L}{\delta \phi^{i}} d^{n} x$

$$
\begin{gathered}
\delta_{Q_{1}} J_{Q_{2}}=J_{\left[Q_{1}, Q_{2}\right]}+T+d(\cdot)+K_{Q_{1}, Q_{2}} \\
T+d(\cdot) \sim 0 \quad \text { Belinfante ambiguities }
\end{gathered}
$$

central extension highly constrained

$$
\left[K_{Q_{1}, Q_{2}}\right] \in H^{n-1}(d) \quad \text { may be field dependent }
$$

$$
\delta_{Q_{1}} K_{Q_{1}, Q_{2}}-\frac{1}{2} K_{\left[Q_{1}, Q_{2}\right], Q_{3}}+\operatorname{cyclic}(1,2,3)=0
$$

Current algebra 4d flat Holographic version

Holography: understand gauge symmetries

$$
\delta_{f} \phi^{i}=R_{\alpha}^{i}\left(f^{\alpha}\right)=R_{\alpha}^{i} f^{\alpha}+R_{\alpha}^{i \mu} \partial_{\mu} f^{\alpha}+\ldots
$$

trivial Noether current

$$
S_{f}=\left(R_{\alpha}^{i \mu} f^{\alpha} \frac{\delta L}{\delta \phi^{i}}+\ldots\right)\left(d^{n-1} x\right)_{\mu}
$$

conserved $\mathrm{n}-2$ form in linearised theory

$$
k_{f}[\delta \phi]=\left(\frac{1}{2} \delta \phi^{i} \frac{\partial}{\partial \partial_{\nu} \phi^{i}}+\ldots\right) \frac{\partial}{\partial d x^{\nu}} S_{f}
$$

$$
d k_{f}[\delta \phi]=0 \Leftarrow\left\{\begin{array}{l}
\frac{\delta L}{\delta \phi}=0 \\
\delta \frac{\delta L}{\delta \phi}=0 \\
R_{\alpha}^{i}\left(f^{\alpha}\right)=0
\end{array}\right.
$$

in GR, I-I correspondence $\left[k_{f}\right] \longleftrightarrow \quad$ Kvf of background, charges = ADM type charges
asymptotic case $\quad x^{\mu}=\left(u, r, x^{A}\right) \quad r=\mathrm{cte} \rightarrow \infty$

$$
k_{f}=k_{f}^{[\mu \nu]}\left(d^{n-2}\right) x_{\mu \nu} \longrightarrow \quad \text { current of lower dimensional theory }
$$

integrability?

$$
k_{f}^{[u r]} \approx \delta J_{f}^{u}, k_{f}^{A r} \approx \delta J_{f}^{A}
$$

$$
x^{a}=\left(u, x^{A}\right)
$$

No news
no superrotations

$$
\check{\partial}^{3} \mathcal{Y}=0=\bar{\delta}^{3} \overline{\mathcal{Y}}
$$

$$
\mathcal{J}_{\xi}^{u}=-\frac{1}{8 \pi G}\left[\left(f\left(\Psi_{2}^{0}+\sigma^{0} \dot{\bar{\sigma}}^{0}\right)+\mathcal{Y}\left(\Psi_{1}^{0}+\sigma^{0} \check{\partial} \bar{\sigma}^{0}+\frac{1}{2} \check{\partial}\left(\sigma^{0} \bar{\sigma}^{0}\right)\right)\right)+\text { c.c. }\right]
$$

Bondi mass \& angular momentum
current algebra represents BMS4 (global)
integrable, no problem with integration of charges
news

$$
-\delta_{\xi_{2}} \mathcal{J}_{\xi_{1}}^{a}+\Theta_{\xi_{2}}^{a}\left(-\delta_{\xi \chi} \chi\right)=\mathcal{J}_{\left[\xi_{1}, \xi_{2}\right]}^{a}+K_{\xi, \xi_{2}}^{a}+\text { trivial }
$$

$$
\Theta_{\xi}^{u}(\delta \chi)=\frac{1}{8 \pi G}\left[f \dot{\bar{\sigma}}^{0} \delta \sigma^{0}+\text { c.c. }\right], \quad \mathcal{K}_{\xi_{1}, \xi_{2}}^{u}=\frac{1}{8 \pi G}\left[\left(\frac{1}{2} \bar{\sigma}^{0} f_{1} \partial^{3} \mathcal{Y}-(1 \leftrightarrow 2)\right)+\text { c.c. }\right]
$$

residual symmetries $\quad l^{-1} \neq 0 \quad \xi=Y^{+}\left(x^{+}\right) \partial_{+}+Y^{-}\left(x^{-}\right) \partial_{-} \quad x^{ \pm}=\frac{u}{l} \pm \phi$

$$
l^{-1}=0 \quad \xi=Y(\phi) \partial_{\phi}+\left(T+u Y^{\prime}\right) \partial_{u}
$$

general solution to EOM $\quad d s^{2}=\left(-\frac{r^{2}}{l^{2}}+\mathcal{M}\right) d u^{2}-2 d u d r+2 \mathcal{N} d u d \phi+r^{2} d \phi^{2}$

$$
l^{-1} \neq 0 \quad \mathcal{M}(u, \phi)=2\left(\Xi_{++}+\Xi_{--}\right), \quad \mathcal{N}(u, \phi)=l\left(\Xi_{++}-\Xi_{--}\right)
$$

closed form

$$
\Xi_{ \pm \pm}=\Xi_{ \pm \pm}\left(x^{ \pm}\right)
$$

$$
l^{-1}=0 \quad \mathcal{M}=\Theta(\phi), \mathcal{N}=\Xi(\phi)+\frac{u}{2} \partial_{\phi} \Theta
$$

transformations

$$
\begin{aligned}
l^{-1} \neq 0 \quad-\delta_{Y} \Xi_{ \pm \pm}=Y^{ \pm} \partial_{ \pm} \Xi_{ \pm \pm}+2 \partial_{ \pm} Y^{ \pm} \Xi_{ \pm \pm}-\frac{1}{2} \partial_{ \pm}^{3} Y^{ \pm} \\
\widetilde{x}^{ \pm}=F^{ \pm}\left(x^{ \pm}\right), \quad \widetilde{\Xi}_{ \pm \pm}=\left(\partial_{ \pm} F^{ \pm}\right)^{-2}\left(\Xi+\left\{F^{ \pm} ; x^{ \pm}\right\}\right)
\end{aligned}
$$

Schwarzian derivative, EM tensor

$$
\begin{array}{rrr}
l^{-1}=0 & -\delta \Theta=Y \Theta^{\prime}+2 Y^{\prime} \Theta-2 Y^{\prime \prime \prime} & -\delta \Xi=Y \Xi^{\prime}+2 Y^{\prime} \Xi+\frac{1}{2} T \Theta^{\prime}+T^{\prime} \Theta-T^{\prime \prime \prime} \\
\widetilde{\Theta}(\widetilde{\phi})=\left(\widetilde{\phi^{\prime}}\right)^{-2}[\Theta(\phi)+2\{\widetilde{\phi} ; \phi\}] & \widetilde{\Xi}(\widetilde{\phi})=\left(\widetilde{\phi^{\prime}}\right)^{-2}\left[\Xi-\frac{\alpha}{2} \Theta^{\prime}-\alpha^{\prime} \Theta+\alpha^{\prime \prime \prime}\right]
\end{array}
$$

no need for current algebras

$$
Q_{\xi}=\frac{l}{8 \pi G} \int_{0}^{2 \pi} d \phi\left[Y^{+} \Xi_{++}+Y^{-} \Xi_{--}\right]
$$

$$
Q_{\xi}=\frac{1}{16 \pi G} \int_{0}^{2 \pi} d \phi[T \Theta+Y \Xi]
$$

Fourier modes $\quad i\left\{L_{m}^{ \pm}, L_{n}^{ \pm}\right\}=(m-n) L_{m+n}^{ \pm}+\frac{c^{ \pm}}{12} m\left(m^{2}-1\right) \delta_{m+n}^{0}, \quad\left\{L_{m}^{ \pm}, L_{n}^{\mp}\right\}=0$
Dirac bracket algebra

$$
c^{ \pm}=\frac{3 l}{2 G}
$$

BMS3 algebra

$$
\begin{aligned}
& i\left\{J_{m}, J_{n}\right\}=(m-n) J_{m+n}+\frac{c_{1}}{12} m\left(m^{2}-1\right) \delta_{m+n}^{0} \\
& i\left\{J_{m}, P_{n}\right\}=(m-n) P_{m+n}+\frac{c_{2}}{12} m\left(m^{2}-1\right) \delta_{m+n}^{0} \\
& i\left\{P_{m}, P_{n}\right\}=0 \\
& c_{1}=0, \quad c_{2}=\frac{3}{G}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\text { limit }}{\text { appropriate combination for the }} \quad \quad P_{m}=\frac{1}{l}\left(L_{m}^{+}+L_{-m}^{-}\right), \quad J_{m}=L_{m}^{+}-L_{-m}^{-} \\
& c^{+}-c^{-} \quad \text { Virasoro algebra contracts to } \\
& i\left\{J_{m}, J_{n}\right\}=(m-n) J_{m+n}+\frac{c^{-}-c^{-}}{12} m\left(m^{2}-1\right) \delta_{m+n}^{0}, \\
& \mathfrak{b m s}{ }_{3} \\
& i\left\{J_{m}, P_{n}\right\}=(m-n) P_{m+n}+\frac{c^{+}+c^{-}}{12 \ell} m\left(m^{2}-1\right) \delta_{m+n}^{0}, \\
& i\left\{P_{m}, P_{n}\right\}=\frac{1}{l^{2}}\left((m-n) J_{m+n}+\frac{c^{+}-c^{-}}{12} m\left(m^{2}-1\right) \delta_{m+n}^{0}\right) \quad \mathfrak{i s o}(2,1) \\
& \text { relation to } \quad A d S_{3} \quad \text { similar to contraction between } \quad \mathfrak{s o}(2,2) \rightarrow \mathfrak{i s o}(2,1)
\end{aligned}
$$

math summary

covariant phase space of 3d
gravity

$$
\begin{array}{ll}
l^{-1} \neq 0 & 2 \text { copies of coadjoint representation } \mathfrak{v i r}^{*} \\
& \text { of } \widehat{\operatorname{Diff}^{+}}\left(S^{1}\right) \quad \text { at } \quad c^{ \pm}=\frac{3 l}{2 G} \\
l^{-1}=0 & \text { coadjoint representation } \quad \mathfrak{b m s}_{3}^{*} \\
& \text { of } \widehat{\operatorname{Diff}^{+}}\left(S^{1}\right) \ltimes_{\mathrm{Ad}} \widehat{\operatorname{Vect}}\left(S^{1}\right)_{\mathrm{ab}} \quad \text { at } \quad c_{1}=0, \quad c_{2}=\frac{3}{G}
\end{array}
$$

Dirac bracket $=$ Kirillov-Kostant bracket on $\mathfrak{g}^{*} \quad\left\{x_{a}, x_{b}\right\}=f_{a b}^{c} x_{c}$

AdS3 \& 3d flat Zero mode solutions

zero mode solutions in both cases

repeat derivation of entropy of cosmological solutions from Cardy type formula
classification of complete solution space through coadjoint orbits
$l^{-1} \neq 0 \quad$ answer to \quad which of the general solution $\quad \Xi_{ \pm \pm}=\Xi_{ \pm \pm}\left(x^{ \pm}\right)$
cannot be obtained from a zero mode solution through a large diffeomorphism ?
well-known math problem Witten, Coadjoint orbits of the Virasoro group, CMP '88
Balog et al., HEP-TH/9703045
coadjoint orbits are symplectic spaces, integrable systems geometric quantization/ UIRREPS
orbit $\quad \mathcal{O} \cong \widehat{\operatorname{Diff}^{+}}\left(S^{1}\right) / G_{0} \quad$ little group $\quad G_{0} \quad$ leaves given coadjoint vector invariant

3d AdS \& flat Positive energy theorems

study behaviour of energy functional on orbit
$E\left[P_{\widetilde{\phi}}^{*}\right]=\int_{0}^{2 \pi} d \phi\left(P^{*}(\widetilde{\phi})\left(\widetilde{\phi}^{\prime}\right)^{2}-\frac{c}{24 \pi}\{\widetilde{\phi}, \phi\}\right)$
energy of asymptotically flat spacetime

$$
\begin{aligned}
c & =\frac{3}{G} \\
c^{ \pm} & =\frac{3 l}{2 G}
\end{aligned}
$$

chiral energy of asymptotically AdS spacetime

$$
\begin{aligned}
\text { Schwarzian derivative } \quad \int_{0}^{2 \pi} d \phi\left[\{\widetilde{\phi}, \phi\}+\frac{1}{2}\left(\left(\widetilde{\phi}^{\prime}\right)^{2}-1\right)\right] \leqslant 0 \quad \forall \widetilde{\phi} \\
=0 \Longleftrightarrow e^{i \widetilde{\phi}}=\frac{\alpha e^{i \phi}+\beta}{\bar{\beta} e^{i \phi}+\bar{\alpha}}, \quad|\alpha|^{2}-|\beta|^{2}=1
\end{aligned}
$$

allows to show that energy is bounded from below iff orbit has a constant representative above Minkowski-space time (+I class with non constant representatives)
similar results in AdS3

```
scattering theory between {\mp@subsup{\mathscr{I}}{}{-}}\mathrm{ and }\mp@subsup{\mathscr{I}}{}{+
particle : UIRREP of BMS3
    structure: }\quadG\ltimes\mp@subsup{}{\textrm{Ad}}{}\mp@subsup{\mathfrak{g}}{\textrm{ab}}{
    finite-dimensional Lie groups Wigner-Mackey
all UIRREPS :
```

I) determine characters of $\mathfrak{g}_{\mathrm{ab}} \quad \Rightarrow \quad \mathrm{Ad} \rightarrow \mathrm{Ad}^{*}$
2) determine orbits \& little groups of Ad^{*}
3) induce UIRREPS of $G \ltimes_{\text {Ad }} \mathfrak{g}_{\mathrm{ab}}$ out of UIRREPS of little group
start from CS formulation of 3d gravity
solve constraints with asymptotic

$$
l^{-1} \neq 0
$$

condition
2 copies of $\operatorname{SL}(2, R)$ cWZW model
= non chiral $\operatorname{SL}(2, R)$ WZW model

Hamiltonian
reduction
(Drinfeld-Sokolov)

Liouville theory with

$$
c^{ \pm}=\frac{3 l}{2 G}
$$

$$
\begin{gathered}
l^{-1}=0 \\
\text { iso }(2, \mathrm{I}) \mathrm{cWZW} \text { model } \\
I[\lambda, \alpha]=\frac{k}{\pi} \int d u d \phi \operatorname{Tr}\left[\dot{\lambda} \lambda^{-1} \alpha^{\prime}-\frac{1}{2}\left(\lambda^{\prime} \lambda^{-1}\right)^{2}\right] \\
\left\{P_{a}(\phi), P_{b}\left(\phi^{\prime}\right)\right\}^{*}=0, \quad k=\frac{1}{4 G} \\
\left\{J_{a}(\phi), P_{b}\left(\phi^{\prime}\right)\right\}^{*}=\epsilon_{a b}^{c} P_{c}(\phi) \delta\left(\phi-\phi^{\prime}\right)-\frac{k}{2 \pi} \eta_{a b} \partial_{\phi} \delta\left(\phi-\phi^{\prime}\right), \\
\left\{J_{a}(\phi), J_{b}\left(\phi^{\prime}\right)\right\}^{*}=\epsilon_{a b}^{c} J_{c}(\phi) \delta\left(\phi-\phi^{\prime}\right) \quad \text { iso }(2, \mathrm{I}) \text { current } \\
\quad \text { algebra }
\end{gathered}
$$

> BMS Liouville with centrally extended global BMS3 symmetry algebra

Hamiltonian form of Liouville

$$
l \rightarrow \infty
$$

$$
\begin{gathered}
\mathcal{L}_{H}=\pi \dot{\varphi}-\frac{1}{2} \pi^{2}-\frac{1}{2 l^{2}} \varphi^{\prime 2}-\frac{\mu}{2 \gamma^{2}} e^{\gamma \varphi} \\
\varphi=l \Phi, \quad \pi=\frac{\mathcal{L}_{H}=\Pi \dot{\Phi}-\frac{1}{2} \Phi^{\prime 2}-\frac{\nu}{2 \beta^{2}} e^{\beta \Phi}}{l} \\
\beta=\gamma l, \nu=\mu l^{2} \text { fixed }
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\widetilde{\mathcal{H}}(\phi), \widetilde{\mathcal{H}}\left(\phi^{\prime}\right)\right\}^{*}=0 \\
& \left\{\widetilde{\mathcal{H}}(\phi), \widetilde{\mathcal{P}}\left(\phi^{\prime}\right)\right\}^{*}=\left(\widetilde{\mathcal{H}}(\phi)+\widetilde{\mathcal{H}}\left(\phi^{\prime}\right)\right) \partial_{\phi} \delta\left(\phi-\phi^{\prime}\right)-\frac{k}{2 \pi} \partial_{\phi}^{3} \delta\left(\phi-\phi^{\prime}\right) \\
& \left\{\widetilde{\mathcal{P}}(\phi), \widetilde{\mathcal{P}}\left(\phi^{\prime}\right)\right\}^{*}=\left(\widetilde{\mathcal{P}}(\phi)+\widetilde{\mathcal{P}}\left(\phi^{\prime}\right)\right) \partial_{\phi} \delta\left(\phi-\phi^{\prime}\right)
\end{aligned}
$$

References

+ C. Troessaert, "Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited" arXiv:0909.2617
"Aspects of the BMS/CFT correspondence" arXiv:1001.1541
+ P.-H. Lambert, "A note on the Newman-Unti group and the BMS charge algebra in terms of NewmanPenrose coefficients" arXiv:1102.0589
+ C.Troessaert, "Comments on holographic current algebras and asymptotically flat spacetimes at null infinity" arXiv:1309.0794
+ P.-H. Lambert, "Einstein-Yang-Mills theory: Asymptotic symmetries" arXiv:1310.2698
+ A. Gomberoff, H.A. Gonzalez, "Flat limit of three dimensional asymptotically anti-de Sitter spacetimes" arXiv:1204.3288
+ H.A. Gonzalez, "Dual dynamics of three dimensional asymptotically flat Einstein gravity at null infinity" arXiv:13031075
+B. Oblak, "Notes on the BMS group in three dimensions. I. Induced representations" arXiv:1403.5803
"II. Coadjoint representation" to appear
"Holographic positive energy theorems in three-dimensional gravity" arXiv:1403.3835

