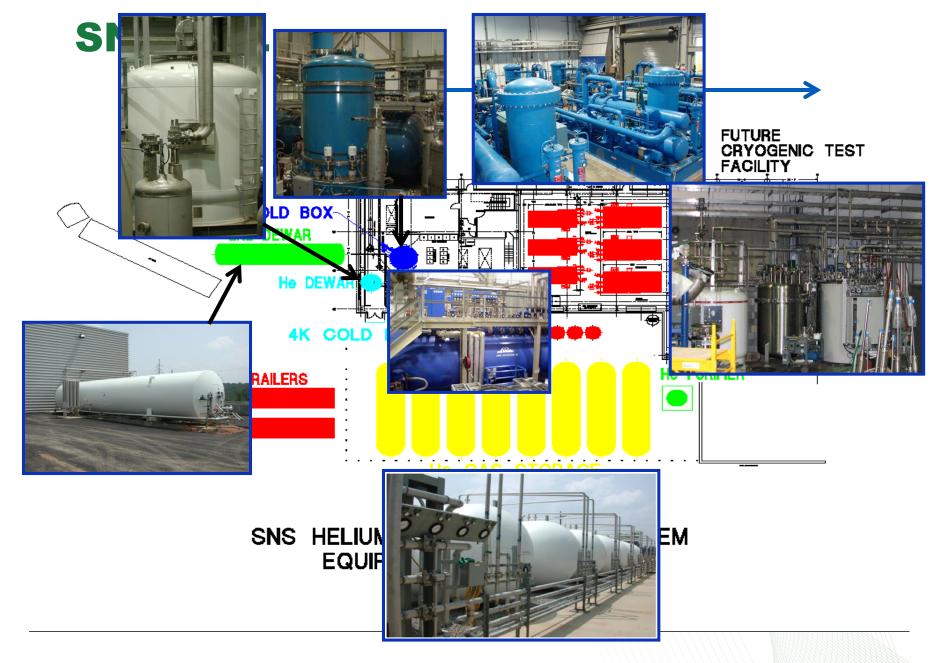

Cryogenic System
Operating Experience
at SNS

Presented at the CEC/ICMC 2015 – C3OrA

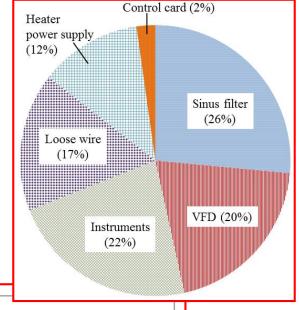
Matthew Howell SCL Systems Lead Engineer Research Accelerator Division, ORNL

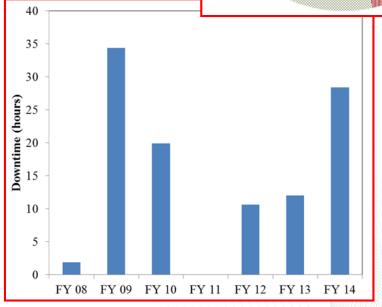

July 01, 2015

Outline

- SNS cryogenic system overview
- System reliability and down time statistics
- Approach to prioritizing efforts
- Tools for maintaining reliability
- Operating experience and lessons learned with components of the cryogenic system
- Summary

The SNS CHL Design Specifications


	Primary	Secondary	Shield
Supply Temperature	4.5K	4.5K	38K
Return Temperature	2.1K	300K	55K
Supply Pressure	3bar	3 bar	4 bar
Return Pressure	0.041bar	1.05 bar	3 bar
Static Load	850 W	5.0 g/s	6070 W
Dynamic Load	600 W	2.5 g/s	0
Capacity	125 g/s	15g/s	8300W


System reliability and down time

statistics for CHL

Much experience gained in last ten years of operation

- High reliability of cryogenic system
 - ~99.7% availability during production run
- Proactive maintenance program developed to correct problems/annoyances prior to becoming issues
- FMEA conducted to prioritize efforts on high risk items
- Continuously improve system

Preventative Maintenance Activity

- Primary goal is to correct issues before affecting neutron production
- Continuously improved and modified for emerging issues
 - Routine tightening of wire terminals added to plan
 - Compressor maintenance techniques evaluated and updated
 - Procedure and Job Hazard Analyses (JHA) red lined and updated

DataStream software utilized

- Creates work order based on time, operating hours, or manual entry
- Routes work order for approval

National Laboratory | REACTOR

Failure Modes and Effects Analysis of the CHL

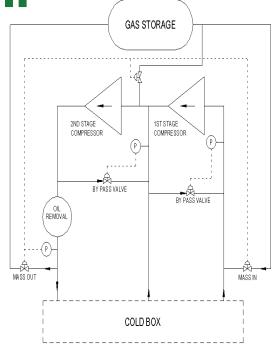
- Breaks work down to task level for analysis
- Systematic approach asking two questions
 - How could this fail during this process task?
 - If it does fail, what is the effect based on severity, probability, and detection?

This process delivers

- Weaknesses in our process
- Ranked items in need of focus
- An opportunity for a group to focus on a process
- A driving force to produce action

Results of the FMEA

- Probability X Severity X Detection = Risk Priority Number (RPN)
- 60% decrease in RPN
- Reduction of high risk items from 76 to less than 20



SNS Warm Compressor System

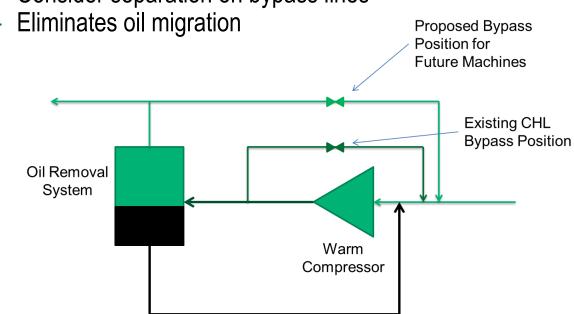
Three first stage and three second stage compressors

- Two of each run during 2-K operation with an in-line spare
- Howden compressors with Teco Westinghouse motors
- Equipped with oil removal stage at each skid
- Additional oil removal system on high header upstream of 4-K cold box
- Adjustable built in volume ratio

	1 st Stage	2 nd Stage
Model #	MK6S/ WLVI321165	MKS/ WLVIH321165
Motor Size (hp)	600	2500
Rotor Diameter (mm)	321	321
Length to Dia. Ratio	1.65	1.65
Discharge Temp (K)	364	375
BVR	2.2-5.0	2.2-5.0
Displacement @ 3550 RPM (CFM)	3341	3341
Flow Rate (g/sec)	220	690
Required Oil Flow (GPM)	42.7	180

Warm Compressors-Lesson Learned

In-line spare compressors are beneficial


Allows maintenance of compressor while operating another

Shaft seal upgrades

- Old seal
 - Experienced blistering resulting in oil leaks
- New design
 - Utilizes dual seal
 - Improved flex by changing from a spring system to a SS bellows

Oil removal strategy

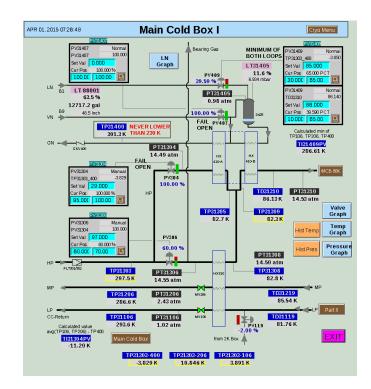
Consider separation on bypass lines

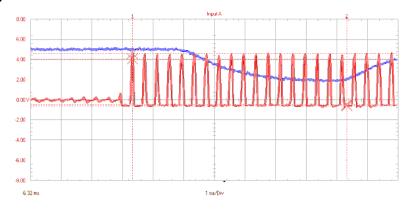
Original design

New design

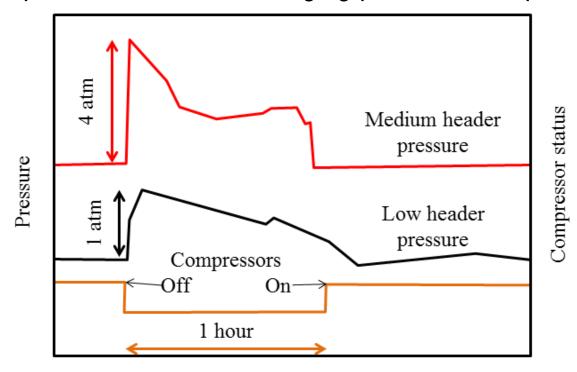
4-K Cold Box

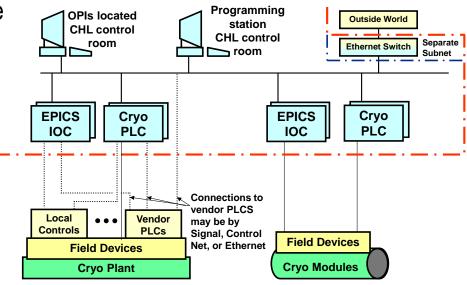
- Provides primary cooling
- Provides shield cooling 38/50K (8300 watts)
- Liquefies helium in sub-cooler and dewar
- Provides two purification steps
 - Two 80-K carbon beds in parallel
 - One 20-K carbon bed with bypass
- Helium storage contained in 8 warm gas tanks and a dewar
- Ten years of operation with no prolonged shutdowns





4K Cold Box - Lessons Learned


- LN2 loop uses excess liquid nitrogen
 - See B. DeGraff's paper "Liquid nitrogen historical and current usage of the central helium liquefier at SNS" at this conference
- Speed sensors in turbines have been problematic when outputting low voltage signal
 - Moved speed sensors closer to target to increase voltage of signal
 - Consider dual speed sensors in future installations
 - Dual channel oscilloscope measure output of speed sensor and output of tachometer
- Carbon bed regeneration has been problematic
 - Isolating bed while in operation has been difficult
- Coriolis flow meters may be a nice upgrade as budget allows


Power Failure

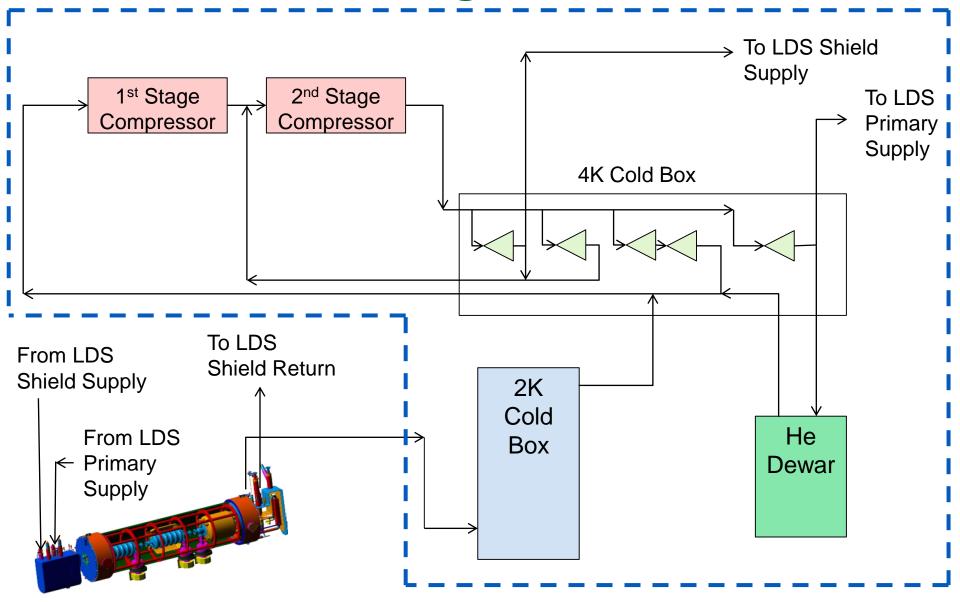
- Power reliability has been incredible
- Initial pressure increase in cryomodule pressure while at 4-K operation
 - Pressure transients have resulted in component failures and cavity detuning
 - Cryomodule design for pressure fluctuations should account for safety and performance
- RS compressors allow for managing pressure until power is restored

Electrical and Controls - Lessons Learned

- IOC Communication 2007 event
 - Process variable and control device are contained within the same IOC whenever possible
- Suggested improvements to consider
 - Move more control into PLC
 - Decreases dependency on IOC
 - Utilize IOC as communication interface
 - Run "hot spare" PLC
- Component failures Calibration program
- FMEA drove upgrade to PLCs, IOCs, Software to avoid obsolescence
- Alarm auto-dialer for call-ins during alarm events
- Switchgear maintenance
 - Often delayed
 - Evidence of arcing found during maintenance

Summary

- The SNS CHL has operated for approximately ten years
- It is a highly reliable system making use of several tools
 - 99.7% available over ten years during neutron production
 - Preventative maintenance program
 - Process FMEA
 - Incorporating lessons learned


 Consideration to the lessons learned at SNS may benefit future installations

Back up slides

CHL Block Flow Diagram

Assigning Values and Calculate RPN

Potential Failure Mode	Potential Effect(s) of Failure	Severity	Classification	Potential Cause(s) of Failure	Current Process				
					Control Prevention	Occurance	Controls Detection	Detection	RPN
Trip a second stage compressor	Unable to maintain required flow to refrigerator, delayed trip of 4KCB	7		Oil Pump Trip	Preventative Maintenance	1	na**	7	49
		7			Monitor Temperature, Pressure, Oil Level, Visual Inspection	1	na**	7	49
		7		Skid PLC Failure	na**	10	na**	7	490
		7		High discharge pressure	System Controls	1	System alarm	1	7
		7		High discharge temperature	na**	1	na**	10	70
		7		High oil temperature	na**	1	na**	10	70
		7		Low oil inventory in skid separator	Procedural & Operator Training	1	Daily checksheet & Log	7	49