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1. LHC, detectors and their magnets ---> Higgs 

H -> ZZ -> 4μ with m4μ= 124.6 GeV
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14 TeV p-p LHC



Energy = 0.3 x B x R

B: 1.9 x from NbTi to Nb3Sn
B: 2.4 x from NbTi to HTS
R: 4-5 x more magnets

• New ≈100 km tunnel in 
Geneva area

• pp-collider (VHE-LHC) 
defining the size

• Options for adding an 
e+e collider (TLEP)         
pe collider (VLHeC) 

• New CERN-hosted study 
with international 
collaboration.

≈ 15 T ⇒ 100 TeV in 107 km
≈ 16 T ⇒ 100 TeV in 100 km
≈ 20 T ⇒ 100 TeV in 80 km

Options for 100 TeV colliding energy

LHC

100 TeV p-p FCC
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Main outcome of LHC – Run 1 at 7-8 TeV:
• Standard Model consolidated and it works 

beautifully…
• Standard Model completed with the  Higgs boson 

discovery (a 100 years effort!)
• No-evidence (yet) of new physics….

If new physics pops-up in LHC - Run 2 at 13-14 TeV, 
then spectrum is heavy:
• Need much more energy and luminosity to explore.
• Since a new machine from concept to collisions 

takes easily 30 years we have started now.
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Outcome of LHC and finding new physics

• This future 100 TeV pp collider is an extremely challenging project.
• It is one of the few options for the future of this research.
 The options shall be explored……



“CERN should undertake design studies for accelerator projects in a global 
context, with emphasis on proton-proton and electron- positron high-
energy frontier machines.”

FCC Study: p-p machine to achieve 100 TeV, CDR & Cost Review in 2018

Possible FCC

today
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It easily takes 30 years time……. start now!

FCC 
Study1st step in progress: 



Two arguments determining the 
minimum radii of the detectors:

1. Bending power in inner detector 
tracker and muon system: 

• 7 times higher collision energy, 14 > 100 TeV, but same tracking resolution
• Sagitta of charged particles in magnetic field B ∝ B.L2

• and momentum resolution ∝ σ/BL2

Thus BL2/𝝈𝝈 to be increased by a factor 7 !

 Try combination of higher point resolution, higher field and increase of radius.

For detector solenoids this means: 
 Scale up magnetic field from 3.5 up to 5 or 6 T and increase bore size.
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2. Design drivers for detector magnets - sizing



2. Calorimeters need minimum depth 
to stop all particles except muons.

Increase radial thickness from 10 to 12λ!
• Based on steel absorbers(with tungsten 

eventually less, but expensive)
• With 0.6 m deep ECAL + 2.2 m deep HCAL we see a total radial build of 3.4 m. 
• For an inner tracker diameter of 3, 4 or 5 m (depending on field and tracker 

point resolution anticipated),  the bore of the solenoid or toroid, when 
calorimeters are inside, is in the range of 10.0 to 12.0 m! 

• And the length scales accordingly.

Three arguments determining the length of the system:

1. Coverage in forward direction, in central magnet up to 23°
Length of solenoid is 3.84xR ,  L=R/tan (23°):   10 m bore, means 19 m long

12 m bore, means 23 m long.
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Design drivers for detector magnets - sizing



2. Extra forward tracker and ECAL 
to cover low angles

• Move unit out, from 5 to some 15 m, 
but the system gets longer!

3. Low angle coverage, ɳ>2.7 (7.7°)
with 10 Tm in forward direction

• Solenoid is useless here. 
• High field toroid difficult, since all current has to pass the small inner bore close 

to the beam pipe. 
Options:
• Add a dipole (like in LHCb detector) for on-beam bending featuring 10 Tm.
• Or invent another solution, may be a low field toroid.

 Note: presented here are maximum system sizes; for cost or technical reasons 
they may be scaled down a bit later on in the process……
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Design drivers for detector magnets - sizing

 Overall detector length 60-80m! 



3. Option 1: Solenoid-Yoke + Dipoles (CMS+)

 Solenoid: 10-12 m diameter, 19-23 m long, respectively, and 5-6 T
+ iron yoke for flux shielding and muon tracking.

 Dipoles: 10 Tm with return yoke placed at z≈18 m.
Practically no coupling between dipoles and solenoid.
They can be designed independently at first.
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52-58 m



Option 1: Solenoid – yoke size reduction

10

Example: 6 T, 12 m bore, 23 m long, 
28 m outer diameter.

• Stored energy 54 GJ, 6.3 T peak magnetic field.

Yoke?  Thickness depends on use of the yoke: 

• For 100% shielding we need 6.3 m thick iron 
to get the 10 mT stray field line at 22 m

≈15 m3, mass ≈ 120 kt (500-600 M€). 
Huge mass, serious consequences for cavern floor, installation, 
opening - closing system, not an elegant design.

• For muon tagging only, yoke thickness can be limited to some 3 m,                      
some 60 kt needed (still 250-300 M€). 

• When not fully shielding, the fringe field has to be accepted, and/or locally 
be reduced by active compensation.



Option 1: Solenoid-Yoke + Dipoles
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• 2 dipoles, each generating ≈10 Tm.
• Designs briefly reviewed: inclined saddle coils (left) or inclined racetrack (right).
• 2.2 T in the bore, some 5.6 T in the windings (to be minimized).
• 0.2 GJ per coil.
• Iron yoke to guide the field and for shielding the coils.
• No iron? Find a dipole design with no coupling (see later slide).
• Also a compact toroid may be a good option to be checked.  

Example of 2 dipole designs, saddle 
coils (left) or flat racetracks (right).



Option 2: Twin Solenoid + Dipoles

Twin Solenoid: 6 T, 12 m dia, 23 m long main solenoid  + shielding coil
Important advantages:
• Nice muon tracking space: gap with  ≈2-3 T for muon tracking in 4-5 layers.
• Light:  shielding coil + structure  ≈8 kt, much lighter than the iron yoke! 
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shielding coil Gap filled with 3 T 
and muon  chambers



Example: 6 T in 12 m bore, 23 m long:
• 2 to 4 T in gap depending on gap size, to be tuned.
• ≈2 T in a 6 m gap or ≈4 T in a 3 m gap.
• Many ways to adjust to specific requests.

Twin Solenoid Explained - field in main coil & gap
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• Stored energy 54 GJ, conductor stored energy density: 12 kJ/kg. 
• 6.0 T in center, 6.4 T peak field in turns, Conductor 4 kt, cold mass: ≈ 6 kt.
• 1.4 m thick inner coil and 0.4 m thick outer shielding coil.
• Large forces resulting from minor misalignments between the coils, fix it!
• Support cylinders and spokes are essential parts of the cold mass.
• 2.6 T in 3.5 m gap between solenoids for muon trackers.
• 5 mT line at 28 meters radius.
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Twin Solenoid - Cold Mass Concept
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New design of the 10 Tm dipoles without iron (to avoid forces and torques).

Twin Solenoid + yoke-free dipole
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Featuring: a main central dipole + 4 racetrack side-dipoles, and:
• No torque + no force in axial direction
• Field integral at 0o: 10 Tm
• Peak field: 5.6 T in main dipole, 6.0 T in side poles 
• Stored energy: 1.8 GJ when in Twin Solenoid back ground field
• Coil mass 160 t, support structure 320 t, total 480 t.



Option 3: Toroids + Solenoid + Dipoles (ATLAS+)

- 3.5 T Central Solenoid for the inner detector trackers (0.6 GJ)
- One Air core Barrel Toroid with 16 Tm in toroid window (48 GJ) 
- Two End Cap Toroids to cover medium angle forward direction (2x1.6 GJ)
- Two internal Dipoles to cover low-angle forward direction with 10 Tm.
- Size: 30 m diameter x 52 m length (36,000 m3). 
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Option 3: Toroids + Solenoid + Dipoles (ATLAS+)

Variant with shorter Barrel Toroid and full diameter End Cap Toroids, both in open 
structure. Advantages:
- Shorter coils, easier to handle
- Open end cap toroids allowing muon chambers inside
- Improved coverage in overlap sections

17



Effect of B and R ∝ L on Solenoid Cost:
• Following scaling rules, calibrated with 

LEP & LHC detector magnets. 
• Cost of 4, 5 and 6 T solenoids (no yoke) 

with radii of 3.5 to 6 m, length follows 
for fixed 28° opening angle.

• Same when including a minimum yoke 
(based on 4 M€/kt all-in).

 Example: 6 T is   ̴60% more expensive 
in a 12 m bore than in a 10 m bore……!

4. Cost scaling - impact of size and field
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Disclaimer: these cost data are preliminary for such large 
systems, and a rough guide only !

28˚



Cost of a standalone helium plant
He plant cost ≈ 1.2 x 2.6 x P(kW@4K)0.6 [in 2015 M€]
(1.2 amplification factor for auxiliaries, transfer lines; 2.6 is a constant, accounting for inflation)

Cost Magnet services – example cryogenics
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Cryogenics power scales with surface 
of cryostat, 1 in single solenoid, 2 in 
twin solenoid 2 and many in toroids.

Example for CMS+ scaling:

• CMS today has 1.5 kW.

• CMS+ in R=6m/L=23m version 
requires 4x, so 6 kW   (8.5 M€).

• Twin Solenoid in R=6m/L-23m 
requires 12x, so 18 kW   (16.5 M€). 

• Why? 2 cryostats and more surface 
on the shielding coil!

• ATLAS+ needs some 20 kW (18 M€).

Cryo cost are in the 10-20 M€ range 
and small when compared to cost of 
magnets and iron, no worries.



• For all three options we need  
manufacturing, pre-assembly 
and installation scenarios.

• And to define and respect 
limitations on cavern size, 
adjacent spaces for assembly 
and shafts diameters.

• Based on the net volume 
needed for magnet installation, 
also the additional space 
needed for opening, closing and 
repair have to be defined.

5. Cavern size, shafts, opening and closing
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Twin Solenoid - modular design and structure
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• Twin solenoid solution was studied in more detail.
• Finding a stable structure connecting both coils.
• Seeking a production and assembly scenario.



• Assembly based on modularity.
• Coil module = Inner + Outer coil + cryostat.
• Cavern shaft diameter is driven by the 

module’s outer diameter and length.
• Clearance for safety is 1 m.
• Mass per module is 2000 t (heaviest part).

Cavern shaft of about 28 m needed

Vacuum vessel shells

Cold mass modules

Temporary supports

Twin Solenoid - modularity and shaft size
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Shaft is deep and wide! 



The dreamed 6 T – 50 GJ class magnets are far beyond what has been 
demonstrated to work. A rigorous design and engineering effort has to start.

Charge: deliver the Magnets Chapter in the FCC-HH detector CDR (2018)
• Establish a work program and schedule 
• Do the necessary design studies and engineering. 

New working group established, a team within CERN with participation of 
other institutes.

Present composition (and Acknowledgements):
• CERN: H. ten Kate, A. Dudarev, M. Mentink, Helder Silva, G. Rolando,   

B. Cure, A. Gaddi, H. Gerwig, S. Klyukhin, U. Wagner, and students

• CEA-Saclay: C. Berriaud

 ..... other institutes welcome, join us!

6. FCC Detector Magnets Development group
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For each magnet variant complete the critical design:

• Superconductor: for 6 T class detector magnets, Al-Ni based or CICC, scale up 
conductors to 75-100 kA @ 6T, demonstrate temperature margin and stability.

• Cold mass: handling of stress, strain and temperature.

• Cryogenics: conduction or direct cooling of conductor, cooling power needed.

• Cryostats: including cold mass supports.

• Quench protection: current, voltage, discharge times, temperature.

• Magnet in modules: sizing and weight, assembly and installation scenarios.

• Magnetic shielding and Radiation shielding requirements.

• Realistic schedule, for R&D, production, installation.

• Cost estimate, compare variants including assembly and installation.

• …and more.

R&D issues
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 Conceptual design study for a 
Future Circular Collider has started.

 A first look at 3 options for detector magnets 
probing 100 TeV p-p collisions completed.

 Magnet dimensions grow with the collision energy.

 Magnets are “huge”: 20-30m diameter, 30-50m long, 60-80 GJ.

 Main focus on 2 main designs featuring 10 + 12 m bore & 5 and 6 T

 Twin solenoid concept has nice features: light, elegant, effective, and 
allowing muon tracking in the intervening space. 

 Solenoid + Yoke, with minimized yoke.

 And the 10 Tm dipoles for covering forward physics.

Conclusion
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The good news: there are no principle technical problems impeding the 
constructing of these magnets.
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