UNIVERSITY OF TWENTE.

New developments in Joule Thomson microcooling at University of Twente

Haishan Cao, S. Vanapalli, H.J. Holland C. Vermeer and H.J.M. ter Brake

University of Twente, The Netherlands

Introduction

Visible light (left) and infrared (right) images of stars.

Artist's impression of a radio telescope array.

Superconductor.

Mobile communication.

Introduction

30 K two-stage microcooler.

Commercial 4 K cryocooler.

Disadvantage:

- Large size
- Mismatched cooling power

Contents

2. Microcoolers with thermoelectric precooling

3. Microcoolers with double-expansion

Single-stage microcooler: Thermodynamics and Geometry

Thermal-hydraulic characteristics of high-pressure channel

Thermal-hydraulic characteristics of low-pressure channel

Single-stage microcooler: Performance

Operating conditions			
Working fluid	Inlet	Outlet	
Nitrogen	80 bar	6 bar	

	Cooler I	Cooler II
\dot{m} (mg/s)	16.3	15.0
P_{gross} (mW)	250	230
$P_{net}@100 \text{ K (mW)}$	175	180
P_{net}/P_{gross}	0.70	0.78

Pattern b

Pillar matrices of Cooler II

Contents

2. Microcoolers with thermoelectric precooling

3. Microcoolers with double-expansion

Microcooler with thermoelectric precooling: Thermodynamics

Microcooler with thermoelectric precooling: Performance

Contents

2. Microcoolers with thermoelectric precooling

3. Microcoolers with double-expansion

Single-stage microcooler

Double-expansion microcooler: Thermodynamics

Schematic of the Linde-Hampson cooling cycle with double JT expansion and the gas cycle drawn in the T-s diagram.

Double-expansion microcooler: Performance

Conclusions

 P_{net}/P_{gross} increases from 0.70 to 0.78.

Microcooler with thermoelectric precooling

Double-expansion microcooler

Cold-end temperature: 83 K;

Cooling power: 90 mW@85 K.

UNIVERSITY OF TWENTE.

Thanks for your attention!

