

Quantifying MLI Thermal Conduction in Cryogenic Applications from Experimental Data

R.G. Ross, Jr.

Jet Propulsion Laboratory, California Institute of Technology

Topics

- Motivated by very cold (6 K) space telescope applications
 - Large MLI uncertainties observed in test data for Hot-side temperatures below 40 K
- Using modeling equations to Quantify (Extract) key parameters of existing MLI designs from test data
 - Conductivity of S/C versus Dewar versus Cryo MLI
 - Understanding Role of Conductivity in MLI performance
- Conclusions and Lessons Learned

Cryogenic MLI Study Motivated by 6K MIRI Instrument on JWST

MIRI in its MLI

MLI Heat Transfer as a Function of Hot-Side Temperature

Key:

SLI Radiation Absorbed ($\epsilon_{\rm H}$ =1, $\epsilon_{\rm C}$ =6.8×10⁻⁴ T $_{\rm H}^{0.67}$)

Lines of constant Effective Emittance

● 20 JPL 20-layer Cassini (SSAK+5EK+15MN+AK)

O20 JPL Duo-layup Cassini (SSAK+5EK/15MN+A) (20 layers in 2 blankets with staggered seams)

Unperf. DAM 1-SN MLI (X = number of layers)
(LMSC dewar minimum achiev. layer density)

Observations:

- Effective Emittance of Dewar MLI drastically degrades as hot-side temperature drops down to 40 K
- Spacecraft MLI has 10x greater effective emittance than dewar MLI

Lockheed Characterization of MLI Emittance as a Function of Temperature

Lockheed Equation for Estimating MLI Thermal Radiation Loads

Classic Lockheed MLI Equation

q = total heat flux transmitted through the MLI (mW/m²)

 $q_c = conductive heat flux transmitted through the MLI (mW/m²)$

 $q_r = radiative heat flux transmitted through the MLI (mW/m²)$

 $C_c = conduction constant = 8.95 \times 10^{-5}$

 $C_r = radiation constant = 5.39 \times 10^{-7}$

 $T_h = hot side temperature (K)$

 $T_c = cold side temperature (K)$

 $T_m = \text{mean MLI temperature (K); typically } (T_h + T_c)/2$

 ϵ_0 = MLI shield-layer emissivity at 300 K = 0.031

N = MLI layer density (layers/cm)

n = number of facing pairs of low-emittance surfaces in the MLI system

Estimation of Thermal Radiation Loads with Cryo MLI

Measured Thermal Radiation Loads with Room-Temperature MLI

Blue = LMSC Dewar MLI

Key:

SLI Radiation Absorbed ($\epsilon_{\rm H}$ = 1, $\epsilon_{\rm c}$ = 6.8×10⁻⁴ $T_{\rm H}^{0.67}$)

Lines of constant Effective Emittance

20 JPL 20-layer Cassini (SSAK+5EK+15MN+AK)

JPL Duo-layup Cassini (SSAK+5EK/15MN+A)
(20 layers in 2 blankets with staggered seams)

Unperf. DAM 1-SN MLI (X = number of layers) (LMSC dewar minimum achiev. layer density)

Observations:

- Room-temperature MLI quickly degrades at lower Hot-Side Temps.
- Spacecraft MLI 10x higher emittance than Dewar ML

Lockheed 37-Layer MLI Calculation for 40K Hot-side Temperature

Nonlinear Equation Set for Lockheed 37-layer Dewar MLI for $T_{H} = 40K$

$$\begin{array}{llll} q_2 &=& k_o \; \kappa(T_2) \; (T_2-4.2)/2 \; + \; C_r \, \epsilon_o (T_2^{\; 4.67} - \, 4^{\; 4.67})/2 \; = \; 7.5 \\ q_3 &=& k_o \; \kappa(T_3) \; (T_3-T_2)/3 \; + \; C_r \, \epsilon_o (T_3^{\; 4.67} - \, T_2^{\; 4.67})/3 \; = \; 7.5 \\ q_5 &=& k_o \; \kappa(T_5) \; (T_5-T_3)/5 \; + \; C_r \, \epsilon_o (T_5^{\; 4.67} - \, T_3^{\; 4.67})/5 \; = \; 7.5 \\ q_{10} &=& k_o \; \kappa(T_{10}) \; (T_{10}-T_5)/10 \; + \; C_r \, \epsilon_o (T_{10}^{\; 4.67} - T_5^{\; 4.67})/10 \; = \; 7.5 \\ q_{17} &=& k_o \; \kappa(40) \; (40-T_{10})/17 \; + \; C_r \, \epsilon_o (40^{4.67} - \, T_{10}^{\; 4.67})/17 \; = \; 7.5 \end{array}$$

No. Layers (v)	T (K)	ΔT (K)	k _o (mW/m²·K)	q _c (mW/m²)	q_r (mW/m ²)	q _{Total} (mW/m²)
cold wall	4.0 Calc		Calc	99% Co	nduction! Fixed	
2	11.5	7.5	25	7.5	0.06	7.5
3	16.5	5.0	25	7.5	0.06	7.5
5	22.0	5.5	25	7.5	0.06	7.5
10	30.0	8.0	25	7.5	0.06	7.5
17	40.0	10.0	25	7.5	0.06	7.5

Measured Thermal Radiation Loads with Room-Temperature MLI

Blue = LMSC Dewar MLI

Key:

SLI Radiation Absorbed ($\epsilon_{\rm H}$ = 1, $\epsilon_{\rm C}$ = 6.8×10⁻⁴ $T_{\rm H}^{0.67}$)

Lines of constant Effective Emittance

20 JPL 20-layer Cassini (SSAK+5EK+15MN+AK)

O20 JPL Duo-layup Cassini (SSAK+5EK/15MN+A) (20 layers in 2 blankets with staggered seams)

Unperf. DAM 1-SN MLI (X = number of layers)
(LMSC dewar minimum achiev. layer density)

Next, Compute Heat
Transfer for 278 K Point
using k₀ = 25

....and then compute for the other T_{HOT} points

Lockheed 37-Layer MLI Calculation for 278 K Hot-side Temperature

Nonlinear Equation Set for Lockheed 37-layer Dewar MLI for $T_{H} = 40K$

$$\begin{array}{llll} q_2 &=& 25 \times \kappa(T_2) \ (T_2 - 4.2)/2 \ + \ C_r \, \epsilon_o (T_2^{\ 4.67} - 4^{\ 4.67})/2 \ = \ Q_{278} \\ q_3 &=& 25 \times (T_3) \ (T_3 - T_2)/3 \ + \ C_r \, \epsilon_o (T_3^{\ 4.67} - T_2^{\ 4.67})/3 \ = \ Q_{278} \\ q_5 &=& 25 \times (T_5) \ (T_5 - T_3)/5 \ + \ C_r \, \epsilon_o (T_5^{\ 4.67} - T_3^{\ 4.67})/5 \ = \ Q_{278} \\ q_{10} &=& 25 \times \kappa(T_{10}) \ (T_{10} - T_5)/10 \ + \ C_r \, \epsilon_o (T_{10}^{\ 4.67} - T_5^{\ 4.67})/10 \ = \ Q_{278} \\ q_{17} &=& 25 \times \kappa(40) \ (40 - T_{10})/17 \ + \ C_r \, \epsilon_o (40^{4.67} - T_{10}^{\ 4.67})/17 \ = \ Q_{278} \end{array}$$

No. Layers	Т	ΔT	k _o	q _c	q _r	q _{Total}
(v)	(K)	(K)	$(mW/m^2\cdot K)$	(mW/m^2)	(mW/m^2)	(mW/m^2)
cold wall	4.0 Calc		Fixed	Cond at low T		Calc
2	38	34	25	252	3	275
3	96	43	25	250	11	275
5	160	64	25	224	57	275
10	220	60	25	132	130	275
17	278	58	25	78	195	275

CEC'15

Computed Thermal Loads for Lockheed 37-Layer Dewar MLI

Key:

- SLI Radiation Absorbed ($\epsilon_{\mu} = 1$, $\epsilon_{c} = 6.8 \times 10^{-4} \, \text{T}_{\mu}^{0.67}$)
- 20 JPL 20-layer Cassini (SSAK+5EK+15MN+AK)
- JPL Duo-layup Cassini (SSAK+5EK/15MN+A)
 (20 layers in 2 blankets with staggered seams)
- Unperf. DAM 1-SN MLI (X = number of layers)
 (LMSC dewar minimum achiev. layer density)
- Modeled results for LMSC 37-layer DAM 1-SN
- Modeled results for LMSC 20-layer DAM 1-SN
- Modeled results for LMSC 10-layer DAM 1-SN
- Lines of constant Effective Emittance

Bottom Line:

- Room-temperature MLI quickly degrades at lower Hot-Side Temps. Avoid using at T_H<100K
- Spacecraft MLI 10x higher emittance than Dewar ML

Conductance and Thermal Gradient Calculation for 21-layer Cassini MLI

Calculations for JPL 21-layer S/C MLI with 328 K hotbox and 87K coldwall

No. Layers	Т	ΔΤ		k _o		q _c	q _r	q _{Total}
(v)	(K)	(K)	(m	nW/m².	K) (r	mW/m^2)	(mW/m	²) (mW/m ²)
cold wall	87	Calc	vacu	um gap (∈=1)	Mostly	y Cond	Fixed
MLI out surface	121	34		n/a	Calc	0	8720	8720
5	167	46		925		8635	85	99% 8720
15	304	137		925		8240	480	8720
1	313	9		925		7613	1107	87% 8720
inner hot box	328	15	vacuu	m gap (∈	=0.08)	0	8720	8720

JPL Cassini MLI is 37x more conductive than Lockheed's Dewar MLI

CEC'15 RR-12

Measured Thermal Radiation Loads with Lockheed Cryo-MLI & SLI

♦ = 9 Layer DAM with 3 silk nets

Key:

SLI facing Black (ϵ_{H} =1, ϵ_{C} =6.8×10⁻⁴ T_H^{0.67})

- SLI facing SLI ($\epsilon_{H} = \epsilon_{C} = 6.8 \times 10^{-4} \, \text{T}_{H}^{0.67}$)

Unperf. 9 Layer DAM with 3-SN (LMSC dewar minimum achiev. layer density)

Bare tank taped with Double Alum Mylar (SLI)

Lines of constant Effective Emittance

Observations:

- Cryo Dewar MLI is seen to improve upon SLI emittance down to 40 K Hot-Side Temps (but only by 2x)
- Spacecraft MLI has no hope at cryogenic Hot Side Temps
- 3M #425 tape is comparable to Cryo MLI

Measured Thermal Radiation Loads with Lockheed Cryo MLI

Calculations for Lockheed's 9-Layer 3-SN Cryo MLI with $T_{H} = 40K$

No. Layers (v)	T (K)	ΔT (K)	k _o (mW/m²⋅K)	q_c (mW/m ²)	q _r (mW/m²)	q _{Total} (mW/m²)
cold wall	4.2 Calc		Calc	88% Conduction!		Fixed
1	11.5	8.3	1.5	1.07	0.14	1.2
1	16.5	4.0	1.5	1.07	0.14	1.2
2	21.7	5.4	1.5	1.07	0.14	1.2
2	25.7	4.0	1.5	1.07	0.14	1.2
3	30.0	4.3	1.5	1.07	0.12	1.2
hot wall	40.0	10.0	-	0	1.2	1.2

Lockheed Cryo MLI is 17x less conductive than Lockheed's 37-Layer Conventional Dewar MLI

Measured Conductances of Various MLI Constructions

600 to 1 Variability in MLI Conductance between Cryo-dewar MLI and S/C MLI

Conclusions

- Calculation technique provides very useful insights into MLI performance
 - Layer Conductance (k₀)
 - Conduction/Radiation/Temp gradient thru MLI
- Lessons Learned: Estimating cryogenic heat loads with cryogenic MLI has LARGE uncertainties
 - 600 to 1 range of conductances (tough job to pick correct value for predictions)
 - MLI quickly degrades to SLI at T_H < 100 K as MLI conductance totally dominates below 100 K