Synthesis of Nanoscale Magnesium Diboride Powder

D. K. Finnemore
Ames Lab Iowa State University
James V. Marzik
Specialty Materials Inc.

Collaborator – Made Pure Boron

- James V. Marzik of Specialty Materials Inc. developed the plasma synthesis method to make high purity boron nanopowders having particle size in the range of 20 nm to 200 nm.
- jmarzik@Specmaterials.com

Plasma Synthesis rf Argon Torch

Gas feed into the rf torch

- $BCl_2 + H_2 \rightarrow B + 2 HCl$
- Add methane, CH₄, for carbon doping
- Add titanium tetrachloride, TiCl₄, for TiB₂
 precipitates
- In this work, we use either undoped boron or boron 2% carbon.
- The point of adding carbon is to raise H_{c2} of the resulting MgB₂ to 35 Tesla

SEM of undoped boron powder from Specialty Materials Inc.

Boron contains both amorphous and crystallized boron – TEM micrograph

TEM of mix of amorphous & crystalline boron particles

Amorphous boron particles

Selective Area Diffraction (SAD)

TEM -- SAD shot

TEM to get particle size distribution

SEM of starting boron powder

Boron powder particle size

Broad descriptors of boron powder

- Fluffy & often electrostatically charged.
- Lacy agglomeration easily can flatten with spatula.
- Difficult to pack evenly.
- Traces of chlorine in EDS/SEM analysis ~0.2%
- We always handle this powder in dry N₂ in glove box or transport it in Mason jars.

Convert B powder to MgB₂ powder

- Use 3 mm size Mg chunks
- Place Mg & B in Mason jar under N₂ gas and mix by rolling for 1 min. [50 g batch]
- Transfer mixed powders to Nb reaction vessel
 150 mm long by 28 mm OD by 1 mm wall.
- Evacuate the vessel and e-beam weld shut.
- React Nb vessel under Ar gas at 830°C for 24 h in horizontal furnace. Open under N₂ in glove box. Temperature & Time can be adjusted.

SEM of MgB₂ Powder 830°C, 24 h

SEM of MgB₂ Powder 830°C 8h

Grain size for 3 batches 830°C – 24 h

Grain size at 830°C for 8h, 12h, 24h

Grain size at 830°C for 24h, 12h & 8h

Particles may have several grains Look at particle size

Change in particle size 830°C for 24h, 12h & 8h

Average particle size for 48 h

Average particle size vs time 830°C

X-ray spectrum for MgB₂ powder

Conclusions

- 1) 830°C for 24h gives particle size under a micron.
- 2) average grain sizes tend to run about ½ the average particle size
- 3) reducing the temperature to 800°C and/or the time to 8h substantially reduces particle and grain size.

Errors of Judgment Things we did wrong

- 1) Use an Fe reaction vessel
- 2) Seal the Nb reaction vessel under Ar and use arc welding.

Mistakes that we made. Problem #1 – Fe depresses T_c

- Fe reaction vessel suppresses T_c about three degrees Kelvin.
- Nb give the same result as Ta so we used Nb for cost reasons.

Problem # 2, Fe promotes a platy growth, often 10 μm across

 In Fe reaction vessel we saw many large hexagonal plates, many in the 5 micrometers to 10 micrometers across

Problem #3, must evacuate the Nb reaction vessel

- We initially sealed the Nb reaction vessels under ¾ atmospheres of Ar which gives about 2 atmospheres of Ar at 830°C.
- Reaction is slow and not reproducible
- The Ar impedes the diffusion of Mg vapor through the packed boron powder.
- The Ar slows the conversion of boron to MgB₂