Cryogenic Engineering Conference & International Cryogenic Materials Conference

Tucson, Arizona, June 28 – July 2, 2015

Presentation ID: C4OrB-01 Paper ID: 39

Study on a cascade pulse tube cooler with energy recovery

—New method for approaching Carnot

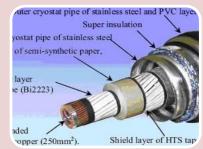
LY Wang, M Wu, J K Zhu, Z Y Jin, X Sun, Z H Gan*

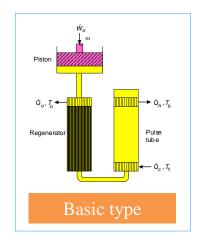
Institute of Cryogenics and Refrigeration, Zhejiang University, Hangzhou 310027, China Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou 310027, China

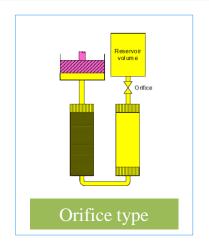
* gan_zhihua@zju.edu.cn 0086 571 87951930

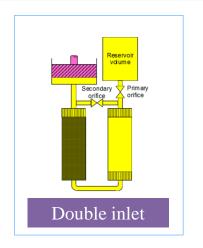
- 1. Motivation
- 2. Theoretical analysis
- 3. Design of a two-stage cascade PTC
- 4. Experimental verification
- 5. Conclusions

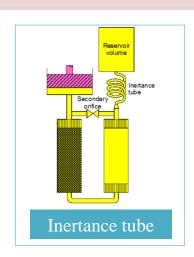
Motivation

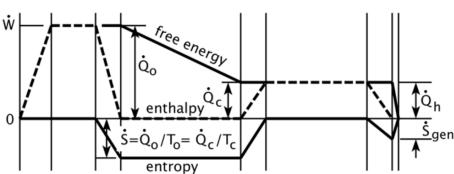

CEC/ICMC 2015



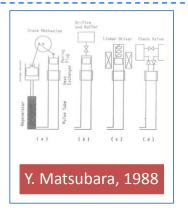


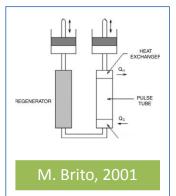


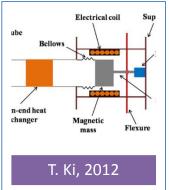


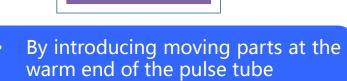


$$\eta = \frac{T_c}{T_h}$$

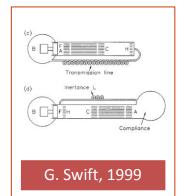


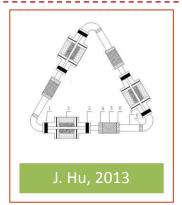

$$\eta_c = \frac{T_c}{T_h - T_c}$$

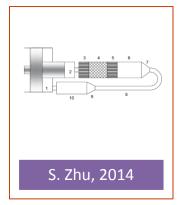

PTCs with work recovery


CEC/ICMC 2015

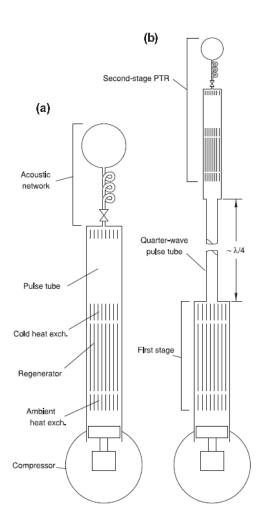
C4OrB-[39]

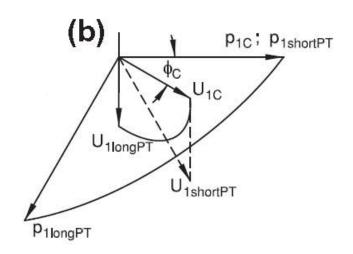






Introduce vibration, lower


- 2
- Through loop configurations
- Cause streaming that deteriorates the cooling performance



reliability

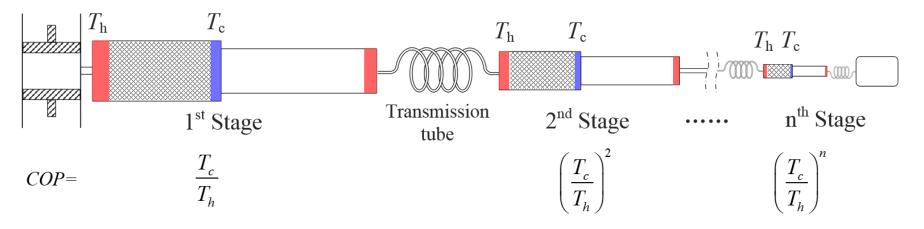
PTCs with work recovery

C4OrB-[39]

3

 Neither moving parts nor streaming brought in

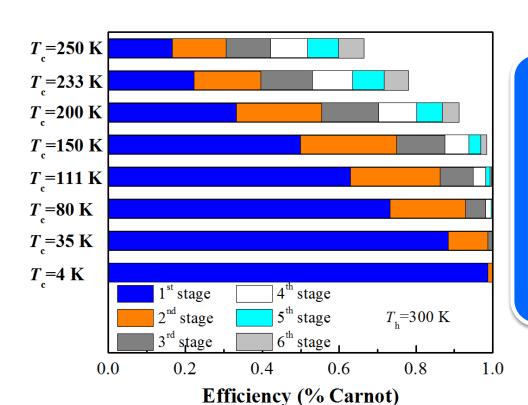
G. Swift 2011



- 1. Motivation
- 2. Theoretical analysis
- 3. Design of a two-stage cascade PTC
- 4. Experimental verification
- 5. Conclusions

A cascade PTC

CEC/ICMC 2015

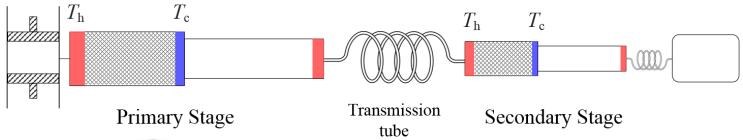

$$Q_{c1} = E_1 \frac{T_c}{T_h} \qquad E_2 = Q_{c1} = E_1 \frac{T_c}{T_h} \qquad Q_{c2} = E_2 \frac{T_c}{T_h} = E_1 \left(\frac{T_c}{T_h}\right)^2 \qquad Q_{cn} = E_{n-1} \frac{T_c}{T_h} = E_1 \left(\frac{T_c}{T_h}\right)^n$$

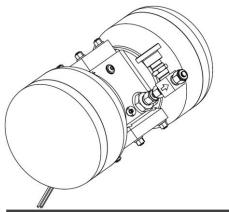
$$COP_n = \frac{Q_{c1} + Q_{c2} + \dots + Q_{cn}}{E_1} = \frac{T_c}{T_h} + \left(\frac{T_c}{T_h}\right)^2 + \left(\frac{T_c}{T_h}\right)^3 + \dots + \left(\frac{T_c}{T_h}\right)^n = \frac{T_c}{T_h - T_c} \left[1 - \left(\frac{T_c}{T_h}\right)^n\right]$$

$$COP_{n \to \infty} = \frac{T_c}{T_h - T_c}$$

A cascade PTC

$$COP_n = \frac{Q_{c1} + Q_{c2} + \dots + Q_{cn}}{E_1} = \frac{T_c}{T_h} + \left(\frac{T_c}{T_h}\right)^2 + \left(\frac{T_c}{T_h}\right)^3 + \dots + \left(\frac{T_c}{T_h}\right)^n = \frac{T_c}{T_h - T_c} \left[1 - \left(\frac{T_c}{T_h}\right)^n\right]$$


- In lower temperature region, the single stage PTC can almost get to the Carnot efficiency
- As the cooling temperature goes up, the benefit of cascading stages becomes more and more noticeable

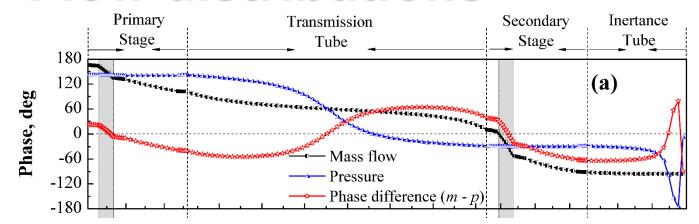

- 1. Motivation
- 2. Theoretical analysis
- 3. Design of a two-stage cascade PTC
- 4. Experimental verification
- 5. Conclusions

Practical Considerations

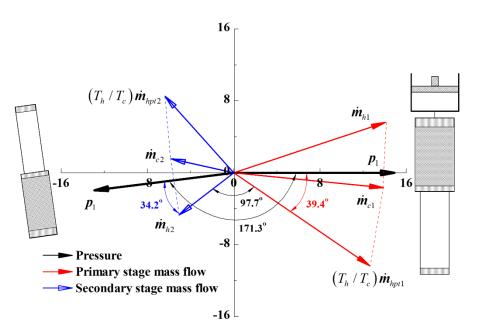
CEC/ICMC 2015

- ✓ High cooling temperature
- ✓ High cooling power

CFIC 2s132			
f/Hz	60		
p_0 / MPa	2.5		
$W_{ m e}$ / ${ m W}$	500		


Design goal			
$T_{\rm c}$ / K	233(-40°C)		
$Q_{\rm c}$ / W	200		

Flow distributions

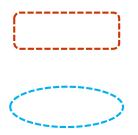

CEC/ICMC 2015

C4OrB-[39]

 θ

The negative phase at the outlet of the primary PTC is turned positive at the inlet of the secondary PTC




Flow distributions

C4OrB-[39]

m

- first increases and then decreases along the transmission tube
- two regenerators are located near the two antinodes of the mass flow wave

p

- decreases progressively in both PTCs
- decreases first and then increases to a large extent along the transmission tube
- two regenerators are located near the two peaks of the pressure wave

CEC/ICMC 2015

C4OrB-[39]

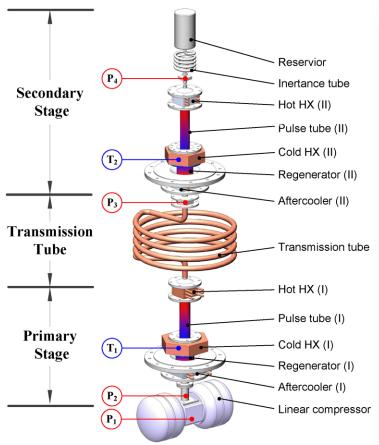
Flow distributions

PV	 204.7 W PV work is recovered 79 W is consumed in this long tube 125.7 W arrives the secondary PTC the cascade pulse tube cooler is still far from 'ideal' due to some inherent losses
Н	• enthalpy flow in the two PTCs are similar as that of a normal single-stage PTC

Calculation results

	Single stage PTC		ascade PTC Secondary stage	cascade
<i>f</i> / Hz		60	Jecondary Stage	cascac
<i>P</i> ₀ / MPa		2.5		
W _e / W		500		
PV work input / W	389.9	379.1	125.7	379.1
Pressure ratio at the hot end	1.214	1.168	1.146	1.168
Pressure ratio at the cold end	1.204	1.155	1.139	_
Cooling power at 233 K / W	196.3	184.5	65.1	249.6
COP	0.3926	0.369	_	0.4992
Percent of Carnot / %	11.29	10.61	-	14.35

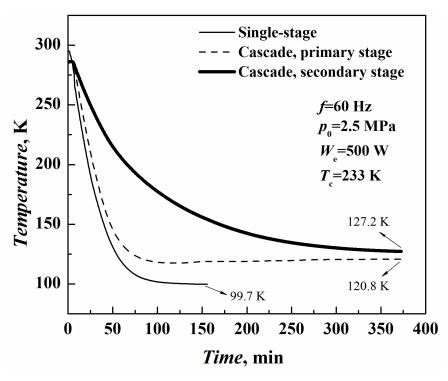
✓ Cascade PTC can bring an extra cooling efficiency of 27%

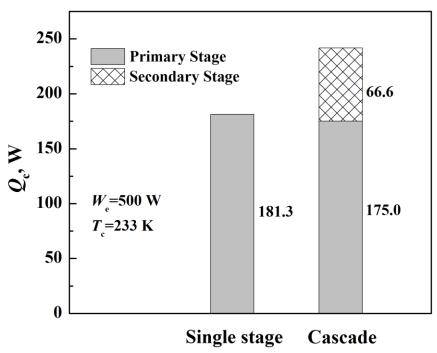


- 1. Motivation
- 2. Theoretical analysis
- 3. Design of a two-stage cascade PTC
- 4. Experimental verification
- 5. Conclusions

CEC/ICMC 2015

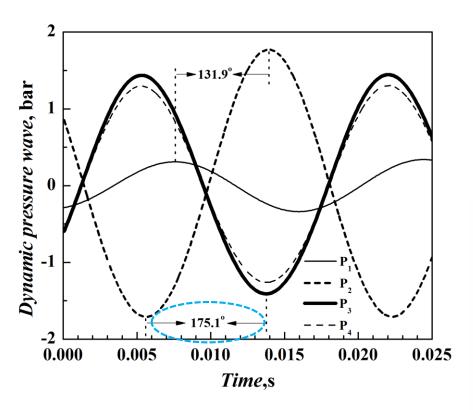
Experimental setup

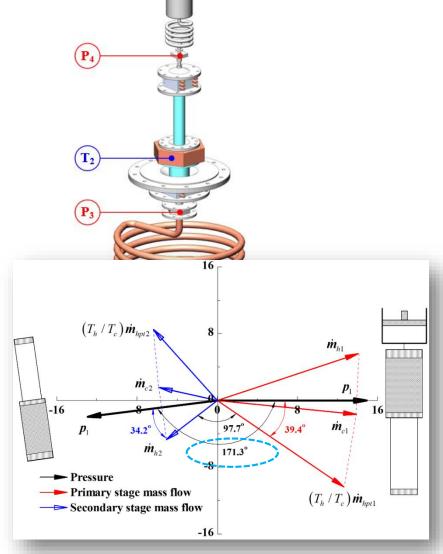



	Parts Name	Dimension	
Primary Stage	REG	53.7 mm i.d., 37.7 mm long	
	PT	30.5 mm i.d., 134.3 mm long	
	IT	8 mm i.d., 2.67 m long	
	RES	$450 \mathrm{cm}^3$	
Transmission tube	14.2 mm i.d., 7 m long		
Secondary Stage	REG	47.6 mm i.d., 48 mm long	
	PT	27 mm i.d., 150 mm long	
	IT	6 mm i.d., 1.4 m long	
	RES	$1000 \mathrm{cm}^3$	

CEC/ICMC 2015

Experimental results




	Single stage DTC	Cascade PTC		
	Single stage PTC	Primary stage S	econdary stag	e cascade
Cooling power at 233 K / W	196.3	184.5	65.1	249.6

Experimental results

CEC/ICMC 2015

- 1. Motivation
- 2. Theoretical analysis
- 3. Design of a two-stage cascade PTC
- 4. Experimental verification
- 5. Conclusions

Conclusions

- C4OrB-[39]
- ✓ A multi-stage cascade PTC is proposed, theoretical analysis shows that the more stages it has, the closer its efficiency will approach to the Carnot efficiency
- ✓ A two-stage cascade PTC is designed, simulation results show that 125.7 W of the 204.7 W PV work at the warm end of the pulse tube could be recovered for driving the secondary PTC
- Experimental results accord well with calculated results, with 500 W electric power input, the cascade PTC obtains a total cooling power of 241.6 W at 233 K, the cooling efficiency is increased by 33%

CEC / ICMC

Tucson, Arizona, June 28 – July 2, 2015 Presentation ID: C4OrB-01 Paper ID: 39

Thanks for your attention!

