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ABSTRACT

The Japan Proton Accelerator Research Complex (J-PARC) cryogenic hydrogen system was completed in April 2008. The proton beam
power was gradually increased to 500 kW. A trial 600-kW proton beam operation was successfully completed in April 2015. We
achieved long-lasting operation for more than three months. However, thus far, we encountered several problems such as unstable
operation of the helium refrigerator because of some impurities, failure of a welded bellows of an accumulator, and hydrogen pump
issues. Furthermore, the Great East Japan Earthquake was experienced during the cryogenic hydrogen system operation in March
2011. In this study, we describe the operation characteristics and our experiences with the J-PARC cryogenic hydrogen system.

INTRODUCTION

Supercritical cryogenic hydrogen is selected as a moderator material in an intense spallation neutron source (JSNS),

which is as one of main experimencar filities in S-PARC.
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Temperature difference between the inlet and outlet of the mederator < 3.0 K.

Para-hydrogen concentration > 99 %
Supply hydrogen temperature to moderator < 20 K.
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Supply temperature fluctuation < 0.25 K.
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Cryogenic hydrogen system was installed from August 2006 to March 2007.

= The first cryogenic test with circulation of supercritical hydrogen was adjourned because of an unexpected
issue with the hydrogen pump. However, the cryogenic hydrogen system was successfully cooled down to the

rated condition within 19 h for the first time in March 2008.
Toward the end of May 2008, we succeeded in generating the first cold neutron beam at JSNS.

Proton power smoothly increased, although the J-PARC facilities were stopped for nine months because of the Great

East Japan Earthquake in March 2011.

Stable 500-kW proton beam operation has been conducted since April 2015. The plan is to increase the proton beam

power toward our goal of 1-MW in 2016.

NORMAL OPERATION

m According to the J-PARC accelerator operation plan, T T T T
we normally conduct cool-down operations thrice annually.

m J-PARC cryogenic hydrogen system can be operated almost
automatically using an operational control approach, which
comprises cool-down, beam injection, stand-by, warm-up, and
quick hydrogen discharge modes.

Cool-down operation
= The hydrogen loop (P = 1.5 MPa) is cooled from
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ambient temperature to approximately 20 K by a
He refrigerator.

Initial pump speed is 52,000 rpm, and a hydrogen
flow of a few g/s circulates approximately at room
temperature.

At 45 K, which is slightly higher than the pseudo-
critical temperature, the cool-down operation is
temporarily holed for 4 h to supply liquid nitrogen
for precooling and to directly adjust the cooling
rate using the heater.

Cool-down operation is completed within 22 h,
and the operation mode automatically t
to the steady-state mode.
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Standby mode
= During short maintenance periods of less than a week, we conduct the

400-kW Proton beam injection

3. Great East Japan Earthquake

The Great East Japan Earthquake with a magnitude of 9.0 struck on March 11th, 2011, the cryogenic hydrogen system was operating
at the rated condition.

Blackout occurred after 20 s.

Instrument air failed after 3 min because the air supply piping buried was broken.

Facility building sank 1.5 m.

Liquid nitrogen tank (20 m3)and the helium buffer tank (50 m3) were inclined by 0.84% and 2.14%.
Part of the external supply piping were also bent because of sinking of the ground.

g~ 5000] T T T T T However, there was no hydrogen leakage from the bent part.
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PROBLEM AND FAILURE

1. Set-up failure of hydrogen pump

Pumps could not be started in hydrogen environment (in 2007)

® because of motor overload, even after we had completed the cryogenic

test in helium environment in November.

® Cause: Increased static friction at the journal bearing and unstable
gas membrane stiffness because of lower density and viscosity.
» Measures: Attaching cutting oil on rotor shaft.

L ion in the pump flange region (in 2008),
during cool-down below 33 K.
The temperature in the flange region, which houses the journal bearings,
a thrust bearing and an O-ring seal, was decreased to 250 K.
We were concerned about instability of the gas membrane, and
hydrogen leakage because of degradation of the sealing performance.
# Cause: Unknown
# Measures: installation of a water channel on the casing flange to warm
it using the cooling water for the pump induction motor.
Temperature around the flange could be maintained at approximately 291
K at the maximum adiabatic efficiency, although the heat loads increased
by a few hundred watts.

2. Transient elevation of pump rotor shaft vibration

was often
for more than two weeks after the cool-down operation (in 2009).

Normal rotor shaft rotates = approximately 4 um,
which is always monitored by a fast Fourler transform (FFT) system.

# Cause: Unknown (Impurity?)

% Measures: We definitely clean the shaft several times using pressure
swing of purified hydrogen gas before cool-down.

Accordingly, the phenomenon has never occurred since then, although

the real cause remains unclear.
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because of the discharge of helium gas in them through the helium vent valve, which was installed in 2010 for protecting the
bellows of the second accumulator as well as for protection against earthquakes, as mentioned above.

® Measures: Instrument air supply was cut off temporarily until the summer outage of 2015, when the electro-
pneumatic positioner and the regulator will be exchanged.

Itis still unknown why the valve opened abruptly although the opening was less than 0.1% of the total valve opening. The
discharge valve has been unnecessary since December 2014 because it was exchanged for the third accumulator with a
higher pressure tolerance of 2.0 MPa.

We were able to resume cryogenic operation 4 days after the failure in 2015.
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CONCLUSIONS

Until now, we have considerable experiences and gained a lot of knowledge by facing several problems such
as unstable operation of helium refrigerator because of impurities, leakage through the welded bellows of an
accumulator, hydrogen pump impeller damage, and blackout and instrument air failure due to the Great East
Japan Earthquake. We have confirmed through the problems that the cryogenic hydrogen system and its
interlock system meet our design requirements.




