




# ESS Accelerator Cryoplant Process Design

X L Wang<sup>1</sup>, P Arnold<sup>1</sup>, W Hees<sup>1</sup>,
J Hildenbeutel<sup>2</sup> and J G Weisend II<sup>1</sup>

<sup>1</sup> European Spallation Source ESS, Sweden
 <sup>2</sup> Linde Kryotechnik AG, Switzerland

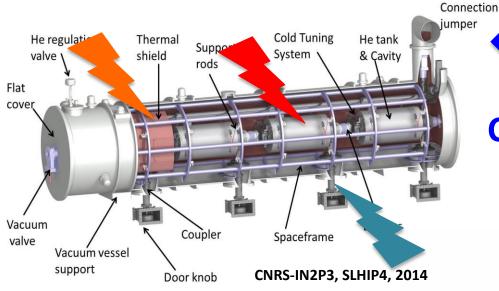




### **Outline**



- Status
- Clients
- Performance
- Process design
- Exergy analysis
- Next step


#### **Status**



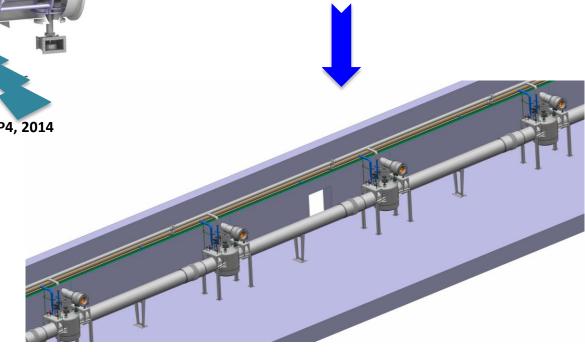
- Two industry studies in Nov 2013
- Call for tender in June 2014
- Contract awarded to LKT in DEC 2014
- Contract signed in March 2015
- Kick-off meeting in May 2015
- Currently under preliminary design stage

### Clients





**■ 43 (+14) Cryomodules** 


**Cryogenic distribution system** 

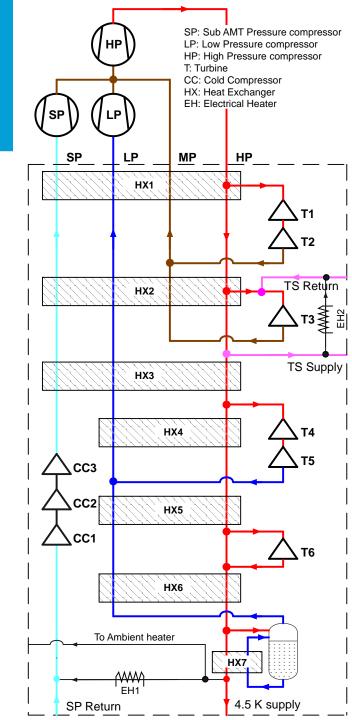


Cavities: 2 K

Shield: 40-50 K

Couplers: 4.5 - 300 K




# Performance



|                          |                         |                                                                                               | 2 K Load, W        |       | 4.5 K Load        |                      | 40-50 K, W |
|--------------------------|-------------------------|-----------------------------------------------------------------------------------------------|--------------------|-------|-------------------|----------------------|------------|
| Operation modes          |                         | Isother<br>mal                                                                                | Non-<br>isothermal | Total | 4.5 K, W<br>Total | Liquefaction,<br>g/s | Total      |
|                          | Nominal                 | 1860                                                                                          | 627                | 2478  | ž V               | 6.8                  | 8551       |
| Stage 1<br>2019-<br>2023 | Turndown                | 845                                                                                           | 627                | 1472  |                   | 6.8                  | 8551       |
|                          | 4.5 K Standby           | 1.                                                                                            | 817.3              | =     | 1472              | 6.8                  | 8551       |
|                          | TS Standby              | 32                                                                                            | 7620               | 2     | 22                | 8                    | 8551       |
|                          | Maximal<br>Liquefaction | Loads in standby mode plus maximum liquefaction rate at rising level into<br>the storage tank |                    |       |                   |                      |            |
|                          | Nominal                 | 2226                                                                                          | 824                | 3050  |                   | 9.0                  | 11380      |
|                          | Turndown                | 1166                                                                                          | 824                | 1990  |                   | 9.0                  | 11380      |
| Stage 2                  | 4.5 K Standby           | 67%                                                                                           | 5                  | 5     | 1990              | 9.0                  | 11380      |
| 2023                     | TS Standby              | -                                                                                             | =                  | 9     | *                 | 8-8                  | 11380      |
|                          | Maximal                 | Loads in standby mode plus maximum liquefaction rate at rising level into                     |                    |       |                   |                      |            |
|                          | Liquefaction            | the storage tank                                                                              |                    |       |                   |                      |            |

## Process design

- Three warm compressors, six turbines, three cold compressors and several bunches of heat exchangers
- Mixed compression cycle at 2 K
- Capacity control
  - Floating pressure cycle for HP compressor
  - VFD for SP, LP compressors and CCs
  - Exchange of CCs and turbine flow parts
- All built-in acceptance test equipment



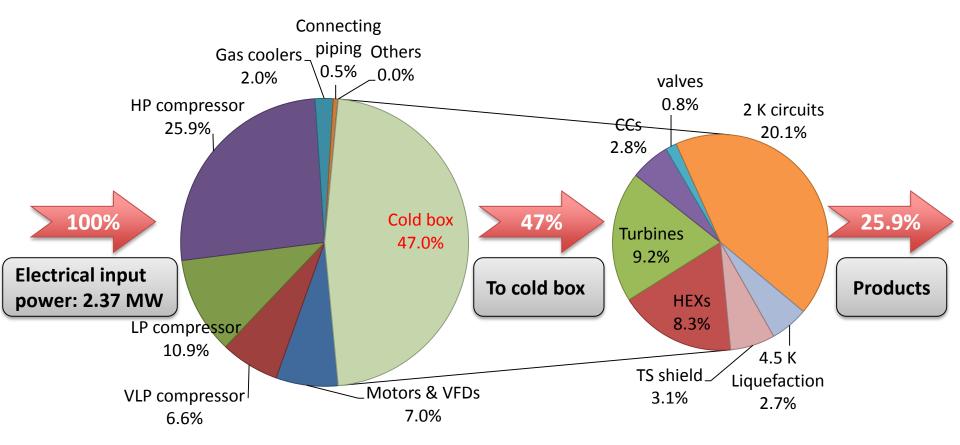
# Exergy analysis (1)



#### A state parameter

$$\dot{X}_{S,1} = \dot{W}_{max} = m[h_1 - h_0 - T_0(s_1 - s_0)]$$

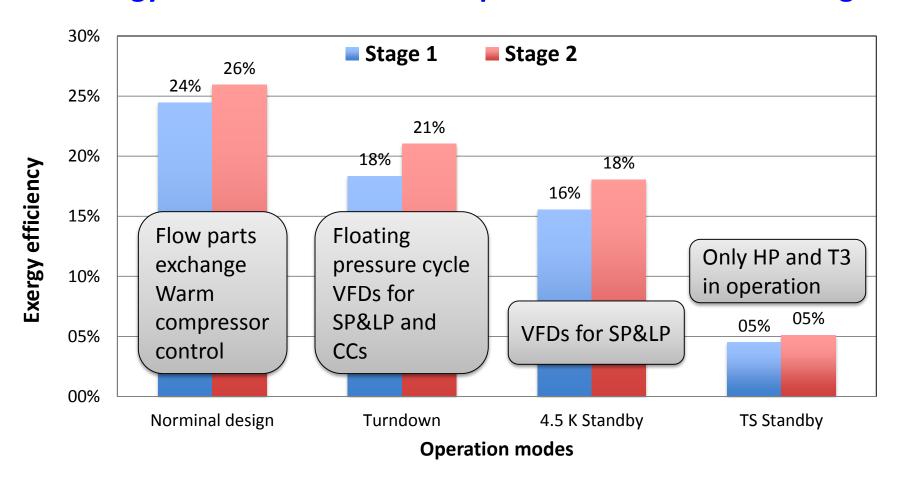
**Exergy balance at steady state** 


$$\dot{X}_{in} = \dot{X}_{out} + \dot{X}_{des}$$

| Components                       | Warm/Cold<br>compressor                           | Turbines                                                                                | Heat exchanger                                                                                                                                                                                                                                                                    |  |
|----------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Schematic                        | w 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         | $\frac{1}{3}\dot{w}$                                                                    | SP <sub>o</sub> LP <sub>o</sub> MP <sub>o</sub> HP <sub>i</sub>                                                                                                                                                                                                                   |  |
| Rate of<br>exergy<br>destruction | $\dot{X}_{des} = \dot{W} + \dot{X}_1 - \dot{X}_2$ | $\dot{X}_{des} = \dot{X}_1 - \dot{X}_2 - \dot{W}$ $\dot{W} = \dot{m} \cdot (h_1 - h_2)$ | $\begin{aligned} & \text{SP}_{i}  \text{LP}_{i}  \text{MP}_{i}  \text{HP}_{o} \\ & \dot{X}_{des} = \dot{X}_{HP_{i}} + \dot{X}_{MP_{i}} + \\ & \dot{X}_{LP_{i}} + \dot{X}_{SP_{i}} - \dot{X}_{HP_{0}} - \\ & \dot{X}_{MP_{0}} - \dot{X}_{LP_{0}} - \dot{X}_{SP_{0}} \end{aligned}$ |  |

# Exergy analysis (2)




#### **Exergy destruction at stage 2 nominal design case**



# Exergy analysis (3)



#### **Exergy efficiencies at various operation modes of both stages**



### **Next step**



- Preliminary design review in SEP 2015
- Key components ordered in this year
- Site acceptance test finished in July 2018

#### End



# THANK YOU

### **Acknowledgements**

Prof. Hans Quack Guy Gistau Baguer

**IPNO** 

**CERN** 

**DESY** 

**IPP-Greifswald** 

**FERMILAB** 

**JLAB** 

**GSI** 

**Uppsala university** 

**KSTAR-NFRI**