

Quench induced critical current degradation in REBCO coated conductors and Bi2223 tapes

Liyang Ye^{1,2}, Mattia Duranti³, Jason Wu³, Pei Li¹, Justin Schwartz², and Tengming Shen¹

- 1. Fermi National Accelerator Laboratory, Batavia, IL 2. North Carolina State University, Raleigh, NC 3. Summer students visiting Fermi National Accelerator Laboratory
- Understanding quench degradation behavior and limits of REBCO and Bi2223 conductors is important for developing high-field magnet technology from these high field conductors.
- Through extensive heater-induced quench experiments and microscopic observation of degraded samples, this work shows: (1) For both REBCO and Bi2223, quench degradation is very localized and strongly depends on T_{max} , the local hot spot temperature during a quench; (2) Standalone REBCO coated conductors showed irreversible degradation when T_{max} exceeded 700 K whereas when impregnated with epoxy, REBCO tapes exhibited degradation at T_{max} as low as 140 K; (3) Early investigation showed Bi2223 powder-in-tube tapes can degrade at a T_{max} of 200 K. (4) Microscopic observation showed delamination in the degraded REBCO coated conductors and other degradation features including holes punctuating the tape.

$I_{\text{c_degraded}}/I_{\text{c_original}}$ – $T_{\text{max_normal zone}}$ behaviors observed among REBCO and Bi2223

- REBCO Conductors degraded irreversibly when $T_{\rm max}$ exceeded ~700K.
- Epoxy (Stycast 2850) impregnated REBCO samples showed early degradation with $T_{\rm max}$ as low as 140 K.

Sample	Heater	Epoxy	T of first damage
1	short	yes	140 K
2	long	yes	280 K
3	long	no	850 K
4	flat	no	
5	long	yes	270 K
6	long	no	750 K

- Bi2223 Conductors degraded irreversibly when $T_{\rm max}$ exceeded ~400K.
- Early degradation occurred with epoxy impregnated Bi2223 samples as well, with $T_{\rm max}$ as low as 200 K.

The Stycast's thermal expansion starts to differ from metals around 150 K. Thermal stress could be the driving force for the early degradation.

T (K)

Stycast 2850FT and copper as a 1312-1315 (1997)

Linear thermal expansivity (1.5–300 K) and heat capacity (1.2–90 K) of Stycast 2850FT, Swenson, C. A., Review of Scientific Instruments, 68, 1312-1315 (1997)

Microstructure observation of the Degraded REBCO Samples

Hole on REBCO side - Sample 1 (Final Quench - $T_{max} \sim 450K$)

Delamination of Cu-Ag layer from REBCO layer

Sample 2 - T_{max} ~750K

Final Quench

Delamination of Cu-Ag layer from REBCO layer