

Apparatus and Method for Low-Temperature Training of Shape Memory Alloys

Adam Swanger¹, James Fesmire², Steven Trigwell³, Tracy Gibson⁴, Martha Williams⁵ and Othmane Benafan⁶

¹NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-M5, KSC, FL 32899 USA

²NASA Kennedy Space Center, Cryogenics Test Laboratory, UB-R1, KSC, FL 32899 USA

³Sierra Lobo ESC, Kennedy Space Center, ESC-850, KSC, FL 32899 USA

⁴Vencore ESC, Kennedy Space Center, ESC-872, KSC, FL 32899 USA

⁵NASA Kennedy Space Center, Exploration Research & Technology, UB-R3, KSC, FL 32899 USA

⁶NASA Glenn Research Center, Cleveland, OH 44135 USA

Cryogenic Engineering Conference

Tucson, Arizona, USA

June 29th 2015

Shape Memory Alloy (SMA) 101

- Shape Memory Alloy's "remember" their shape after being deformed, and return to it when subjected to heating or cooling.
- Solid phase changes: Austenite & Martensite

• Can have 1-way or 2-way shape memory effect.

Images Credit: Google

INTRODUCTION

- Cryogenic thermal management systems employing Shape Memory Alloys (SMA) to transport heat from undesirable to desirable regions, or vice versa.
 - Passively Active: moving parts that respond to temperature
 - Engineered Systems: tuned to operate at particular temperatures
 - Applications for ground and space storage, ISRU, habitats, space suits, etc.
- Low temperature two-way shape memory actuation was the goal!

Apparatus for Low-Temperature Training of Materials (ALTM)

- Compression Actuator
- Vacuum Chamber
- G-M Cryocooler

- Temperature & Pressure Measurement
- Two-Way Actuation Verification

SMA Specimens

- Two-way memory is ingrained by high temp annealing followed by rounds of deformation below the martensitic transformation temp.
 - Transformation temps are a function of alloy constituents, and the composition ratios.
- Large knowledge gap regarding low-temperature SMA's
 - High-temp SMA's (>300 K) have been studied extensively.
 - A lot of low-temp SMA work has been done over-seas (i.e. China & Russia), but few studies have been done at cryogenic temperatures.
 - Overall difficulty in achieving low-temperature two-way shape memory.

- ALTM specimens were 40mm x 10 mm x 1 mm thick rectangles, with a 10 mm out-of-plane S-bend.
- Alloys were thought to have a transformation temperature below 77 K.
- NiTi alloys with addition of Fe, Cr and Co

Training Methodology

- To achieve two-way actuation S-shaped samples were subjected to the following process:
 - High-temp annealing in the s-shape ← Multiple Rounds
 - Cool-down to cryo temperatures in the ALTM while in the s-shape
 - 3. Compression until completely flat while at cryo temperature
 - 4. Controlled warm-up unloaded.

Multiple Rounds

Simplified SMA Training Sequence

ALTM Design Challenges & Solutions

- Cool SMA sample below LN₂ temp (77 K) without using a different cryogen due to safety & cost constraints.
 - Utilize a 20 W @ 20 K G-M cryocooler (Cryomech A230)
 - Required use of a vacuum chamber
- Compress SMA sample flat at cryogenic temperature without introducing excessive heat.
 - Low conductivity G10 piston, aluminum head, G10 face
 - Aluminum guide on cold-head to thermalize piston face
- Vacuum chamber had only one 40 mm port.
 - Only interface for piston, instrumentation, and vacuum pump
 - G10 tube was used as both the piston body and feed-through.

SMA Training Fixture

- Copper base with aluminum piston guide.
 - Positions piston and thermalizes assembly.
 - Creates a "cold box" around the SMA sample.
- Sample anchored at one end by a brass block; other end centered in the guide.
 - Affords good thermal conductivity between the cold-head and SMA sample.
- Strategically located stainless steel pin to prevent copper galling during compression.

ALTM Integration

- Compression was applied by a 40 mm vacuum angle valve mated to the piston warm-end by a magnetic coupling.
- 6-way vacuum cross was employed for vacuum pump and instrumentation interfaces.

ALTM Operation

- 6 type-E thermocouples were used during SMA training with the ALTM
 - 2 on the copper cold-head
 - 2 on the SMA specimen
 - 2 in the G10 piston face

- Cold end was wrapped with 10 layers of Cryolam MLI
- SMA sample and piston face were allowed to thermalize prior to compression

Verification of SMA Two-Way Actuation

Visual verification was most definitive method

- Inexpensive USB-style camera with integrated LED lighting.
- Due to spatial constraints the unit was vertically mounded, with a 45° mirror.
- Wires penetrated the vacuum chamber via an 8-pin feed-through.

Camera worked in high vacuum, down to temperatures of 30 K!

Conclusion

NASA

- The Apparatus for Low-Temperature Training of Materials (ALTM) was used to successfully train various SMA samples at temperatures as low as 30 K.
- Utilization of a USB camera inside the vacuum chamber proved highly successful, and verified two-way shape memory effect in several cases.
- Integrating all the hardware through one 40 mm vacuum port was successful, albeit complicated to execute. More ports would be preferable.
- Motivation for the new ALTM was aimed at SMA training, but the expectation is that its capability is extendable to a wide variety of other materials and situations where exercising specimens at cryogenic temperatures is needed.

