Development of high efficiency Stirling cryocoolers for high temperature superconducting motor

CEC-ICMC2015 C1OrA-03 June 29, 2015

Kyosuke Nakano, Kenta Yumoto and Yoshikatsu Hiratsuka

Technology Research Center Sumitomo Heavy Industries, Ltd.

Outline

- Introduction
- General design and measurement system
- Energy flow analysis
- Improvement results
- Summary

- Introduction
- General design and measurement system
- Energy flow analysis
- Improvement results
- Summary

HTS motor system

Cryocoolers for electric vehicle driven by HTS motor system have been developed in a joint research with Sumitomo Electric Industries, Ltd.

In comparison with the conventional electric motor, the system can expected about 20 percent fuel economy improvement.

LN2 heat exchanger & tank

- High efficiency, reliability, compact cryocooler is needed.
- The final target of the cryocooler performance is 150 W at 70 K and COP > 0.1

Superconducting motor

The model of Superconducting motor unit

http://www.sei.co.jp/RandD/theme/automotive/

Stirling-type pulse tube cryocooler

➤ SHI developed high-power stirling-type pulse tube cryocoolers (STPCs) for cooling HTS vehicles from 2010 to 2012.

'U' type split STPC

- The cooling capacity of the in-line STPC is 175 W at 70 K (COP 0.046) and the 'U' type STPC is 145 W at 70 K (COP 0.038).
- The efficiency of the cryocooler is required to be COP > 0.1.

Energy-flow of pulse tube cryocooler SHI

It is difficult to further improve the efficiency of the pulse tube cryocooler because the work-flow generated from the hot-end of the pulse tube cannot be recovered.

Energy-flow of Stirling cryocooler

C10rA-03 Cryogenics Group

- Stirling cryocooler can meet the demand for high efficiency because the work-flow can be recovered.
- In order to improve the efficiency, we decided to change the expander from a pulse tube to a free-piston.

- Introduction
- General design and measurement system
- Energy flow analysis
- Improvement results
- Summary

Designed specification

Details of the first prototype Stirling cryocooler (STC)

▶ Because it is very difficult to get COP > 0.1 with the first prototype unit, we set the performance target to be a cooling capacity of 150 W at 70 K, COP 0.07 at an inlet cooling water temperature of 30 °C.

Measurement system

P-V work
$$W_{cp} = f_0 \cdot \oint P_{cp} \cdot dX_{cp} \cdot A_{cp}$$

Heat rejection $Q_{cl} = C_{_w} \cdot G_{_{cl}} \cdot (T_{_{win}} - T_{_{wout}})$

Pressure drop loss of connecting tube
$$W_{ct} = f_o \cdot \oint \frac{1}{2} \cdot (P_{cp} + P_{ea}) \cdot d(V_{cp} - V_{ea})$$

- Introduction
- General design and measurement system
- Energy flow analysis
- Improvement results
- Summary

Experimental result

In 2013, the first prototype unit was developed.

Cooling capacity Qch =125 W (COP 0.058) at 70 K
However, it's not enough compared with the first target....

Energy flow analysis

Experimental results

Compressor energy flow		
Compressor input power	Win	2150 W (V=145V, I=21A, P=0.072)
Compressor work flow	Wcp	1780 W
Compressor back space work flow	Wcb	80 W
Compressor copper loss	Qcc	160 W
Compressor iron loss	Qci	80 W
Mechanical loss of moving part.	Qcm	50 W (=Win-(Wcp+Wcb+Qcc+Qci))
Compressor heat rejection	Qcp	252 W
Expander energy flow		
Connecting-tube pressure loss	Wct	60 W
Expander hot-end P-V work	Wea	200 W
Expander buffer P-V work	Wcp	0.8 W
Cooler heat rejection	Qcl	1805 W
Expander cold head P-V work	Wch	240 W (calculated)
Expander heat loss	Hre	115 W (calculated)

•The heat loss of expander ,E_{re} ,was calculated as 115 W, and can be reduced. Therefore, the cooling performance was further improved by optimizing the regenerator ratio, clearance of displacer, and by reducing the conduction loss.

- Introduction
- General design and measurement system
- Energy flow analysis
- Improvement results
- Summary

Improvemet results

In 2014, the second prototype unit was developed.

➤ A cooling capacity of 151 W at 70 K with an input power of 2.15 kW and COP of 0.07 respectively, were obtained.

Effect of environment factors

To simulate the vehicle environment

Cooling capacity at 70 K vs. cooling water inlet temperature.

Effect of inclination

- ➤ The effect on the cooling capacity by the difference in the inlet cooling water temperature decreased about 0.5 W/°C.
- The effect of inclination is negligible.

HTS vehicle test

May in 2015, HTS vehicle test was conducted.

Parameter	Target
Torque of motor	650Nm
Power of motor	100kW
Rev speed	4000rpm
Size of motor	100L
Efficiency	10% improve Compare a EV

➤ No obvious failure or performance degradation under the HTS vehicle environment was observed.

Outline

- Introduction
- General design and measurement system
- Energy flow analysis
- Improvement results
- Summary

Summary

The significant results of our research are:

- ➤ A prototype STC has been developed, and a cooling capacity of 151 W at 70 K and COP 0.07, respectively, were obtained.
- A prototype unit of the developed STC was installed in an HTS motor system of an electric vehicle, and a trial running test has been conducted. The prototype unit has been operated without failure or obvious performance degradation.
- ➤ It is necessary to further improve the efficiency and reliability, and to reduce the size and weight of cryocooler for practical use of HTS motors.

Acknowledgement

This work was supported by Strategic Innovation Program for Energy Conservation Technologies Project of the New Energy and Industrial Technology Development Organization (NEDO) of Japan and a joint research with Sumitomo Electric Industries, Ltd.

Thank you for your kind attention.

If you have any questions, please send me an e-mail. Kys_nakano@shi.co.jp

