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Abstract. Currently, many space missions using cryogenic temperatures are being planned. In 
particular, high resolution sensors such as Transition Edge Sensors need very low 
temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator 
(ADR) is one of most useful tools for producing ultra-low temperatures in space because it is 
gravity independent. We studied a continuous ADR system consisting of 4 stages and 
demonstrated it could provide continuous temperatures around 100 mK. However, there was 
some heat leakage from the power leads which resulted in reduced the cooling power. Our 
efforts to upgrade our ADR system are presented. We show the effect of using the HTS power 
leads and discuss a cascaded Carnot cycle consisting of 2 ADR units. 

1. Introduction 
Many scientific measurements have been taken using a microgravity environment in recent years. In 
the study of X-ray astrophysics observations, the most active research is on the polarimetry of cosmic 
microwave background (CMB). By measuring CMB in fine detail, it is considered that it should be 
possible to establish the cause of the wide bandwidth of the cosmic microwave background. 
     The X-ray detector used in the polarimetry of CMB is the transition edge sensor (TES) X-ray 
microcalorimeter [1]. The microcalorimeter is shown in Figure 1. This sensor consists of an absorber, 
thermometer and heat sink, and measures the X-ray energy from the temperature-increase of the 
absorber caused by the detected X-rays. However, the temperature-increase of the absorber caused by 
the detected X-rays is the result of very low energy levels, typically 1.0*10-15 J. Therefore, by 
operating the element below 100 mK and using a highly sensitive sensor, the temperature-increase can 
be measureable in this condition. 
     The energy resolution of the TES X-ray microcalorimeter depends on the fluctuation of phonon 
numbers, as shown in Equation (1), using the temperature of the system T, sensitivity of the 
thermometer α and heat capacity of the element C. 
 

EFWHM ∝ KT!C/  α (1) 
 



 
 
 
 
 
 

    The thermometer of the TES X-Ray Microcalorimeter uses a superconducting material and 
measures the temperature increase of the absorber by rapidly changing the superconduction to normal 
conduction at the phase transition edge. The sensitivity of thermometer α is shown Equation (2) using 
a resistance R and temperature T. 
 

α = !!"#
!!"#

 (2) 

 
    The TES X-Ray Microcalorimeter used in the polarimetry of CMB is needed to operate in an ultra-
low temperature environment less than 100 mK [1]. It is ideal for installation in a scientific satellite to 
measure the polarimetry of CMB without being affected by the debris and water in the atmosphere. 
With this background, it is necessary to develop a refrigerator that operates under 100 mK and can be 
used in space. Therefore, we studied a continuous ADR system (CADR) consisting of 4 stages. 
However, the 4-stage-CADR cannot operate under 100 mK because of heat leakage from power leads, 
which reduces the cooling power, and the problems associated with the switching temperature of the 
4-3 stage heat switch. In this study, several approaches to upgrading our ADR system are presented. 
First, we show the effect of using the HTS power leads that reduce heat penetration. We then 
conducted experiments on adiabatic demagnetization to improve the switching temperature of the 4-3 
stage heat switch by using a cascaded Carnot cycle consisting of 2 ADR units. 
 

 
Figure 1. The schema of TES X-Ray Microcalorimeter. 
 

2. Adiabatic demagnetization refrigerator  
The adiabatic demagnetization refrigerator (ADR) uses the magnetocaloric effect caused by changing 
the external magnetic fields to change the entropy of the magnetic material. The structure of the ADR 
and an example of the Carnot cycle is shown in Figure 2. The operation of this refrigerator is not 
affected by gravity. Moreover, the ADR has the ideal properties for a cosmic refrigerator because it 
has high refrigeration efficiency and it is possible to miniaturize and reduce its weight. However, the 
ADR cannot continue to cool and prevent the rising temperature in the magnetization process because 
it must operate with a repeated magnetization and demagnetization process. Because the experiments 
must be stopped when the temperature rises in the magnetization process, the ADR cannot be used in 
experiments that take a long time. Therefore, it is necessary to solve this problem of cooling 
intermittency in the ADR when using it as an ultra-low temperature refrigerator. 
  



 
 
 
 
 
 

 
Figure 2.  The Structure of ADR and Constitution example of carnot cycle. 
 

3. Continuous adiabatic demagnetization refrigerator 
To solve the refrigeration intermittence of the ADR, Peter Shirron et al. devised the continuous 
adiabatic demagnetization refrigerator (CADR) [2] [3]. The structure of the 2-stage CADR and the 2-
stage Carnot cycle as the simplest example is shown in Figure 3. The CADR consists of two 
refrigeration units (a magnetic material and superconducting magnet) and a heat switch. As shown in 
Figure 3, two refrigeration units are connected in series using a heat switch. The CADR operating 
property is that the temperature rise of the cold stage is prevented by demagnetization of the other 
refrigeration. Figure 4 shows the cycle of a 2-stage CADR. In step 1, stage 1 is cooled by 
demagnetization. In step 2, stage 1 is magnetized, but the cold stage can be kept at a constant low 
temperature because stage 2 is starting to demagnetize and absorb the heat generation of stage 1 when 
heat switch 1 is turned on instantaneously. Notice stage 2 needed to be designed so that it has more 
than twice the cooling power of stage 1 to absorb the heat load of the cooling object and heat 
generation of stage 1 by magnetization. In step 3, stage 1 is demagnetized after magnetization of 
stage 1 is complete, and heat switch 1 is again turned off. At this point, heat switch 2 is turned on and 
stage 2 starts magnetizing to dissipate the heat as an exhaust heat stage. Therefore, the CADR is able 
to refrigerate continuously by conducting this cycle repeatedly. 

 

 
Figure 3.  The structure of 2-stage CADR and Constitution example of 2-stage carnot cycle. 
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Figure 4. Cycle of the 2-stage CADR. 
 

4. 4-stage continuous adiabatic demagnetization refrigerator 
The CADR is able to operate if it consists of only two refrigeration units (a magnetic material and 
superconducting magnet) and a heat switch. However, if the operating temperature is between 4.2 K 
and 100 mK and the CADR is a two-stage unit, the mass of magnetic material must be increased and 
the 2-stage CADR needs a very large magnetic field. Therefore, if we want to operate the CADR in 
this temperature range, such as between 4.2 K and 100 mK, the CADR must become a multi-stage unit 
and each stage needs to share the temperature range. Moreover, it is important to choose a magnetic 
material that has a large entropy change in the temperature range, because it is difficult to obtain a 
large entropy change if the same magnetic material is used in each stage of the CADR. In this study, to 
operate the CADR in the temperature range between 4.2 K and 100 mK, we designed the CADR to 
consist of 4 stages. The conceptual design and cycle of a 4-stage CADR are shown in Figure 5 and the 
specification for each stage is shown in Table 1. Stage 1 is operated continuously at under 100 mK, 
and connected to stages 2, 3, and 4, and the baseplate as the exhaust heat stage. The baseplate is 
cooled to 4.2 K using a GM refrigerator. In this cycle of the 4-stage CADR, the stage on the heat side 
starts magnetization and demagnetization, and the cold stage is then cooled. The heat generated in the 
magnetization process is absorbed by the demagnetization of the contiguous stage when the heat 
switch is turned on. Finally, the cold stage is kept under 100 mK because steps 4 and 5 are repeated. 
     The stages are connected to each other by heat switches. The heat switch between stages 1 and 2 is 
a superconducting heat switch, and between stage 2 and the baseplate a passive Gas-Gap Heat Switch 
(PGGHS) is used [4]. 
 

 
Figure 5. Conceptual design and cycle of a 4-stage CADR. 
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TABLE 1. Specification for each stage. 

Stage  Operating Temperature Refrigerant Field 
Mass (Magnet + 

Refrigerant) 
1 60 mK CPA 0.1 T 0.57 kg 
2 55 - 280 mK CPA 0.5 T 0.57 kg 
3 250 mK - 1.0 K CPA 1.5 T 0.57 kg 
4 0.9 K - 4.5 K  GLF 4 T 0.83 kg 

*Refrigerant:CPA =CrK(SO4)2・12H2O, GLF=GLiF4 

   

5. Structure of the CADR cryostat 
In this study, the structure of the CADR cryostat consists of a vacuum vessel, 60 K shield and 4 K 
shield on the outside. The structure and a picture of the CADR cryostat are shown in Figure 6. The 
inside of the vacuum vessel is kept in a high vacuum state by a vacuum pump, so that heat loads from 
the room temperature are avoided. The 60 K shield is cooled by the first stage of the GM refrigerator, 
and the 4 K shield is cooled to 4.2 K by the second stage of the GM refrigerator. The baseplate of the 
CADR is the exhaust heat stage, and made of oxygen-free copper to provide a large heat capacity. 
Conversely, the 4 K shield, 60 K shield, and vacuum vessel are made out of aluminum to minimize 
any increase in mass. 

 
Figure 6. Structure and picture of the CADR cryostat. 
 

6. Experiment for cooling the 4.2 K baseplate 
The baseplate temperature is influenced by various heat loads and internal heat generation. The heat 
loads consist of conductive heat, radiant heat and joule heat generation. These heat loads are absorbed 
by a 0.1 W model 4 K GM refrigerator before influencing the baseplate. The cooling power of the 4 K 
GM refrigerator is 0.15 W at 4.2 K, and the value that heat loads subtract from 0.15 W is the cooling 
power that can absorb the exhaust heat of the CADR. In this study, to reduce these heat loads, REBCO 
superconducting tapes were chosen for the power leads of the superconducting magnet between the 60 
K shield and 4.2 K baseplate, because the heat energy (joules) into the 4.2 K baseplate had a zero 
value. A picture of the 1st - 2nd stages, and the REBCO tapes and their structure, are shown Figure 7. 
     We measured the heat load from the 1st stage to the 4.2 K baseplate by wiring the REBCO current 
leads and compared the two minimum temperatures that the 2nd stage reached when eight REBCO 
tapes were connected and when none were connected. The REBCO superconducting tapes were 0.1 
mm thick, 2.5 mm wide and 140 mm long and eight of them were connected between the 60 K shield 
and 4.2 K baseplate.  
     The two temperature variations when eight REBCO tapes, and none, were connected are shown in 
Figure 8. With no REBCO tapes connected, the minimum temperature was 2.6 K, and with the 
REBCO tapes, it was 2.76 K. With this result, the heat load into the baseplate was 14 mW with a 



 
 
 
 
 
 

temperature difference of 0.16 K. In addition, all the heat loads for each stage of the cryostat are 
shown in Figure 9. The total heat load into the CADR system, including the supporting material, pre-
cooling line using liquid nitrogen, power leads of the superconducting magnet, superconducting leads 
of the thermometer, energy heat generation and radiant heat of the shield, was calculated at 0.116 W. 
This value is about 77% of the cooling power of 0.150 W of the GM refrigerator at 4.2 K, and the 
remaining 0.034 W could then be used as the exhaust heat for the CADR. Therefore, the heat load into 
the CADR system can be lower than the cooling power of the GM refrigerator using the REBCO 
superconducting tapes. In contrast, the total amount of heat load into the 60 K shield was calculated at 
2.70 W and the cooling power of the GM refrigerator at 60 K was 3.0 W. Consequently, the GM 
refrigerator could adequately absorb the heat load of the 60 K shield. 

 
Figure 7. Pictures of the 1st - 2nd stages, REBCO tape and structure of REBCO tape. 
 

 
Figure 8. Temperature variation without the REBCO tape (left) and with the REBCO tape (right). 
 

 
Figure 9. Total heat loads for each stages of the cryostat (Unit:W). 
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7. Experiment on adiabatic demagnetization in 2-ADR units 
The previous 4-stage CADR could reach only 120 mK continuously on the ground environment. 
Because of this, we found there was a problem with the switching temperature of the heat switch 
between stages 4 and 3. To improve the switching temperature of this heat, we charged the heat switch 
with 4He at 6 torr and conducted adiabatic demagnetization experiments on the 2-stage ADR.  
     In this 2-stage ADR, we used the ADR of stages 4 and 3 of the previous CADR. The structure and 
picture of the 2-stage ADR are shown in Figure 11. Stages 4 and 3 were set on the baseplate, which, 
however, exchanged heat only with stage 4 because stage 3 was kept adiabatically isolated from it. In 
other words the baseplate was the exhaust heat stage and stage 3 was the cold stage. The heat switch 
between the baseplate and stage 4 was incorporated in stage 4, which, in turn, was connected to 
stage 3 by the heat switch and a thermal strap of oxygen free copper. The experimental procedure 
follows: 
 
1. Magnetize stage 4 to 3.99 T (3 A). 
2. Demagnetize stage 4 and magnetize stage 3 to 1.5 T (3.75 A). 
3. Demagnetize stage 3. 
4. Re-magnetize stage 4 to 3.99 T. 
 
     The temperature and tesla variation for the 2-stage adiabatic demagnetization experiment are 
shown in Figure 11s. From around 2700 s, we found the heat switch turned off at about 2.7 K and the 
temperature of stage 3 was then constant at 0.67 K. From this result, we confirmed the switching 
temperature of the heat switch between stages 4 and 3, and stage 3 reached 0.67 K.  
     Next, we attempted to re-magnetize stage 4, although the temperature of stage 3 rose at around 
4700 s, and the adiabatic state of stages 3 and 4 was broken because, it was believed, there was a 
temperature difference of 5 K at 4700 s. 
.  

 
Figure 11. Structure and picture of the 2-stage ADR. 
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Figure 11. Structure and picture of the 2-stage ADR. 
 

8. Conclusion 
We succeeded in enabling the 4.2 K baseplate to reduce the heat load by adopting REBCO current 
leads between the 1st stage and the baseplate, and the total heat loads into the baseplate were absorbed 
by the GM refrigerator.  
     We confirmed that the heat switch between stages 4 and 3 turned off at 2.7 K and achieved a 
minimum temperature in stage 3 at 0.67 K. However, when we re-magnetized stage 4, the adiabatic 
state between stages 4 and 3 broke down, because a temperature difference of 5 K was generated 
between the two stages. Accordingly, we need to reduce this temperature difference. For example, we 
could consider increasing the amount of heat transferred between stages by increasing the sectional 
area of the thermal strap and improving the performance of the heat switch between stages when the 
heat switch is turned on. 
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