WARM-UP CALORIMETRY OF **DEWAR-DETECTOR ASSEMBLIES**

A VEPRIK, B SHLOMOVICH, A. TUITTO

SCD AND IMOD

Unclassified - Commercially Restricted

LN2 BOIL-OFF CALORIMETRY: PRACTICE AND LIMITATIONS

EXPERIMENTATION SETUP

Unclassified - Commercially Restricted

FE MODELING @150K

L=22mm,

Unclassified - Commercially Restricted

Virtual heat

outflow: -

0.143W

- OD=8mm. WT=50um
- (nominal) • L605
- Dewar interior 5% Cold shield exterior 5%
- Cold finger 20% Substrate 30%

Unclassified - Commercially Restricted

Elevated self heat load - loss of vacuum > natural outgassing

> release of trapped contaminants

DEWAR DETECTOR

ASSEMBLY

Unclassified - Commercially Restricted

LN2 BOIL-OFF CALORIMETRY:

- > limited accuracy and repeatability, especially for short cold fingers > not suitable for other than 77K applications
- heat load @ 77K can not be recalculated to another temperature

BOIL-OFF CALORIMETRY FOR HOT (150K) APPLICATIONS

- > exotic liquids (Xenon @165K and Carbon Tetra-Fluoride CF4 @145K)
- > complicated logistics
- > health & occupational hazards
- > limited accuracy and repeatability, especially for short cold fingers

- > accurate calorimetry at any temperature
- > no exotic cryogenic liquids

Se Unclassified - Commercially Restricted

Unclassified - Commercially Restricted

FE MODELING @150K

Unclassified - Commercially Restricted

LN2 BOIL-OFF CALORIMETRY: PRACTICE AND LIMITATIONS

Unclassified - Commercially Restricted

BOIL-OFF CALORIMETRY: PRACTICE AND LIMITATIONS

Flow meter

BOIL-OFF STATION

LN2 boil-off calorimetry

Heat load =(boil-off rate) x (latent heat of vaporization)

Limitations:

- · LN2 inside the cold finger thermal short
- · Flow rate "last drop" boiling
- · Explosive (geysering) boiling
- · Residuals of gaseous N2 convective and conductive losses
- gas expansion
- Typical accuracy is 10%

Unclassified - Commercially Restricted

WARM-UP CALORIMETRY: BACKGROUND

Heat Fourier equation for the warm-up $C(T)\dot{\mathbf{T}} = H_0(T) + H; T \in [T_{init}, T_h], t > 0$ C(T) – aggregate heat capacity $H_0(T)$ – aggregate parasitic heat inflow (conductivity, convection, radiation) T = T(t) – instant temperature warm-up rate

Unclassified - Commercially Restricted

Unclassified - Commercially Restricted

- · Heating of N2 residuals inside tube: parasitic
- · Not applicable for short cold fingers

56 Unclassified - Commercially Restricted

WARM-UP CALORIMETRY: BACKGROUND

H - trial heat load

- · Accuracy of dual-slope calorimetry is not sufficient
- · Novelty: multi-slope calorimetry

Unclassified - Commercially Ro **EVALUATION OF SELF HEAT LOAD** $\dot{\mathbf{T}} = aH + b$ $\dot{\mathbf{T}} = 0$; $H = -H_0$ $\Rightarrow -aH_0 + b = 0$ $\Rightarrow H_0 = \frac{b}{}$

Run #	Dewar #1			Dewar #2		
	а	ь	H_0 , mW	а	ь	H_0 , mW
1	0.000833	0.121375548	145.68	0.000841	0.121311	144.22
2	0.000833	0.121217626	145.55	0.000838	0.121301	144.75
3	0.000826	0.120200975	145.51	0.000835	0.120522	144.34
Average			145.58			144.44
Normalized STD			0.06%			0.2%

MULTI-SLOPE WARM-UP CALORIMETRY:

➤ Use of regular LN2

Sel.

- > Accuracy and repeatability are inherently high
- o thermometer and timer are more accurate than mass
- o warm-up curve is very smooth and convenient for processing
- o test may be performed in vacuum
- > May be performed at any FPA temperature
- > Applicable in production of operational IDDAs