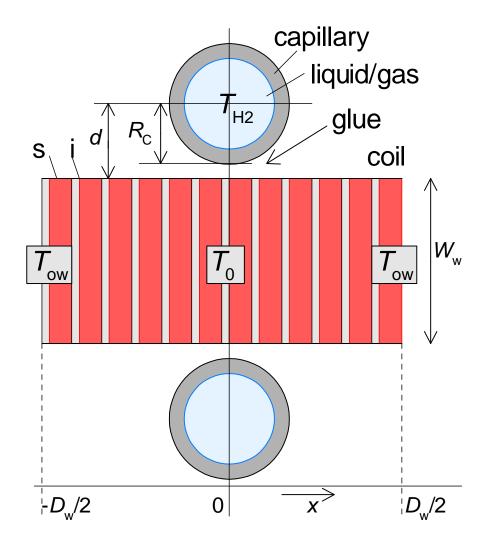
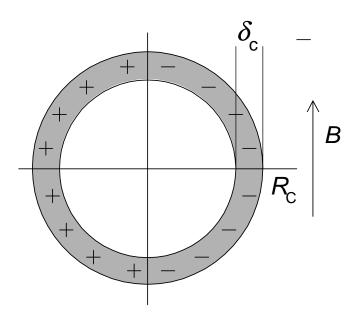

Capillary cooling of superconducting coils*

A.T.A.M. de Waele, B. Oswald, T. Reis, J. Oswald


Oswald Elektromotoren GmbH

Miltenberg, Germany

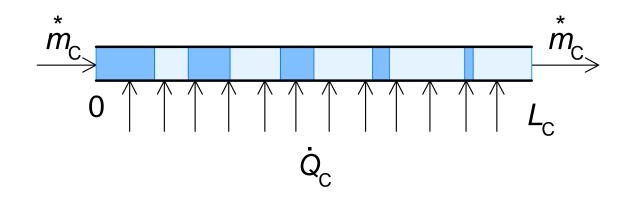
*patent pending


cross section of a coil with capillaries glued on top

assumed values of the various parameters.

description	symbol	assumed value
exit pressure	p_1	1 bar
capillary inner diameter	D_{C}	1.6 mm
capillary wall thickness	δ_{c}	0.2 mm
distance capillary to coil	d	1.1 mm
length one coil winding	L_{W}	0.5
length capillary	LC	2×0.5 m
frequency	ν	10 Hz
field amplitude	B ₀	1 T
electrical resistivity	$ ho_{c}$	$34 imes 10^{-8}~\Omega$ m
AC loss	\dot{Q}_{C}	10 W
thermal cond. insulation	κ_{i}	0.1 W/Km
conductor/insulator ratio	$t_{ m s}/t_{ m i}$	5
coil thickness	D_{W}	10 mm
tape width	W_{W}	3 mm
friction factor	fr	0.02

cross section of a capillary with AC magnetic field

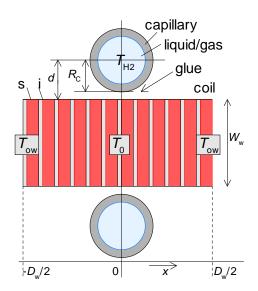


eddy-current heating

$$\dot{Q}_{e} = \frac{\pi \left(2\pi\nu B_{0}\right)^{2}}{2\rho_{c}} \delta_{c} R_{C}^{3} L_{C} = 1.8 \text{ mW}$$

flow resistance

flow per coil 1.1 liter LH2 per hour



assume:

- plug flow
- constant friction factor
- pressure drop below 1 bar

pressure drop (rough estimation!)

$$p_0 - p_1 \approx \frac{0.3}{D_{\rm C}^5} \left(\frac{\dot{Q}_{\rm C}}{\rho_{\rm V} L_1}\right)^2 L_{\rm C} f_{\rm r} = 160 \ {\rm Pa}$$

 ΔT between the LH2 and the center of the coil (borrow expression from electrical capacitor)

$$\Delta T = \frac{\dot{Q}_{c}}{2\pi\kappa_{i}L_{C}} \ln\left(\frac{d}{R_{C}} + \sqrt{\left(\frac{d}{R_{C}}\right)^{2} - 1}\right) = 7 \text{ K}$$

 ΔT between the center of the coil and the outer windings

$$\Delta T = \frac{t_{\mathsf{i}}}{t_{\mathsf{i}} + t_{\mathsf{s}}} \frac{\dot{Q}_{\mathsf{c}}}{\kappa_{\mathsf{i}} L_{\mathsf{w}} W_{\mathsf{w}}} \frac{D_{\mathsf{w}}}{8} = 14 \text{ K}$$

T of the outer layers $\mathbf{20} + \mathbf{7} + \mathbf{14} = \mathbf{41}~\mathrm{K}$

Conclusion

- capillary cooling is a promising technique for cooling superconducting AC coils

- the thermal resistance between the outer windings of the coil and the LH2 needs attention