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Motivation

 Intrinsic strain sensitivity: Reduction in Ic with strain 

 Affects the performance of high-field magnets utilizing Nb3Sn

 Becomes an increasingly severe problem at higher magnetic fields

 Why?

A15 Nb3Sn

Source: Godeke PhD thesis [1]
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Overview

 How does the critical current depend of temperature, magnetic field and strain?

 How can we model the disorder dependent critical temperature and upper critical 

field?

 Why is Nb3Sn so strain sensitive?

 How does Nb3Sn compare to other superconductors?



How does critical current depend on temperature, magnetic 
field and strain?

 MAG (Mentink-Arbelaez-Godeke) scaling relation for Nb3Sn, with wire dependent parameters C, μ, p, q, 

Tc(ε), and Hc20(ε)

 Used as standard model (with μ ≈ 1) for the HEP and ITER (mathematically equivalent form) 

communities [2,3]

 Strain sensitivity “hidden” in critical temperature Tc(0,ε) and upper critical field Hc2(T,ε)

 Recent addition: free parameter μ for the temperature dependence
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Why wire dependent free temperature parameter μ?

MAG scaling relation could benefit from free parameter μ

• Mathematical argument: If μ = 1 for perfectly homogeneous wire  μ ≠ 1 for inhomogeneous wire

• Experimental observations: (inhomogeneous) binary Nb-Sn thin films, Nb3Sn wires [3,4,5]
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Mathematical argument: inhomogeneity Experimental observation of binary thin films



MAG scaling relation:

Mathematically equivalent to the Ekin scaling relation [6]:

Nearly equivalent* to the Durham scaling relation [7]:

 Consensus has been reached

How does MAG scaling compare with other Nb3Sn scaling 
relations?

* Except for a weakly strain-dependent pre-factor s(ε)9/22 , and with μ fixed to 1.38 
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How does MAG scaling compare with NbTi scaling?

NbTi critical current

 MAG scaling relation for Nb3Sn equivalent to Bottura scaling relation for NbTi

(not considering strain)

 But different temperature dependence of Hc2: Nb3Sn: Hc2(t) ≈ Hc20(1-t1.52), NbTi: Hc2(t) ≈ Hc20 (1-t1.7)
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Bottura scaling relation for NbTi [8]:

Approximation:
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Critical current density of Nb3Sn and NbTi

Works for both Nb3Sn and NbTi

• Consistent with Ekin and Durham scaling relationships for Nb3Sn

• Consistent with Bottura scaling relation for NbTi, but with different temperature dependence of upper 

critical field

• Nb3Sn strain sensitivity “hidden away” in strain dependent critical temperature Tc(ε) and upper critical field 

Hc2(0,ε)

 What determines strain dependent Tc(ε) and Hc2(0,ε)?
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Overview

 How does the critical current depend of temperature, magnetic field and strain?

 How can we model the disorder dependent critical temperature and upper critical 

field?

 Why is Nb3Sn so strain sensitive?

 How does Nb3Sn compare to other superconductors?



Influence of disorder on Nb3Sn

 Superconducting properties of Nb3Sn are strongly disorder dependent, so disorder must be included in 

calculations

 Ab-initio calculations of Nb3Sn with Quantum Espresso [9]

 Electron-lifetime broadening approach [10]: 

Disorder  Reduced scattering time τ  Electron-lifetime broadening EB = h/(2πτ)

A15 Nb3Sn

Nb Sn



Validation: Martensitic transformation

 Experimentally observed Martensitic transformation: 

 Spontaneous tetragonal distortion at low temperature (T < 43 K)

 Not present in disordered samples, ρn > 25 ± 3 µΩcm

 Ab-initio calculation:

 Optimal shape tetragonal for τ > τc = (1.53±0.08)×10-14 s, cubic for τ < τc

 Corresponding calculated normal state resistivity: ρn > 27.0 ± 1.4 µΩcm  Consistent

a

b
c

Experimental Ab-initio



Connection to superconducting properties

 Global constants: α2
Eff , ω0, µ*

 Electron-phonon coupling characteristic: 

α2(ω) = α2
Eff × N(EF) × exp(-ω/ω0) [11]

 Ab-initio calculation of electronic and phonon 

density of states

 Result: Eliashberg spectrum

Ab-initio: Electron density of states Eliashberg spectrum

Ab-initio: phonon dispersion curves



Calculation model for Tc and Hc2

Calculation model for disorder dependent Tc, Hc20, and martensitic transition

• Calculation result: 

• Strong coupling corrected critical temperature

• Strong coupling corrected variable limit upper critical field with Pauli limiting

• Validated with experimental observations

Calculation 
results Measurements 

+ literature

Calculation 
result
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 How does Nb3Sn compare to other superconductors?



How are Tc and Hc20 affected by strain?

 Strain dependence of Ic through strain-dependent Hc20(ε) and Tc(ε)

 Strain dependence of Hc20(ε) expressed with strain function s(ε) (well-known shape)

 (Semi)-empirical expressions with free strain parameters

 Tc(ε) ~ Hc20(ε)1/w, w = 2…3

 What determines (the strain dependence of) Tc and Hc20?
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External application of strain: Sub-lattice distortion

Strain induced distortion of the niobium chains (Calculated ab-initio)

• Similar to occurrence during martensitic transition (= experimentally observed)

• Anisotropic in nature

• Affects the electronic and vibrational properties of the crystal

(Sublattice distortion suppressed  Properties of crystal barely affected)

Cubic Nb3SnStrained Nb3Sn

Electronic band structure



Strain dependent critical temperature and upper critical field

Calculation:

 Fixed mean free path so that Tcm = 16.7 K, μ0Hc2m = 28.1 T, no assumed strain behaviour or free strain 

parameters

 Calculated normalized Hc20(ε) consistent with experimental observations in shape and magnitude

 Calculation: Power law dependence between Tc and Hc2 with w = 2.24, consistent with experimental 

observations [7]

100 
strain:

110 
strain:



Strain dependent normal state resistivity

Anisotropic normal state resistivity due to anisotropic nature of sublattice distortion

 Calculation result: Strain  Anisotropic resistivity

 Compressive strain: Longitudinal ρn ↓, transverse ρn ↑

 Experiment:

 Nb-Sn thin films etched into special patterns, allowing for longitudinal and transverse resistivity 

measurement

 Result: Consistent with calculation result

Transverse ρn

SEM image U-spring with etched thin film

Longitudinal 
ρn



Electronic and vibrational contribution to strain sensitivity

What is the relative contribution to strain sensitivity from the strain-dependent electronic and vibrational 

properties?

 Comparison: Strain sensitivity phonon DOS suppressed versus regular calculation

 Calculation result: Near stoichiometry, strain-sensitivity mainly (~85%) due to strain-dependent electronic 

properties

 Experimental evidence: Strain-dependent ρn  Strain sensitivity of electronic properties not negligible
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Comparison between superconductors

Calculation result Experimental result Why?

Strain sensitivity Nb3Sn > Nb3Al Consistent [12] Lower degree of sublattice

distortion in Nb3Al

Strain sensitivity Nb3Sn ≫ Nb Consistent No niobium chains in Nb

Strain sensitivity Nb3Sn ≫ NbTi Consistent [13] No niobium chains in NbTi

Calculation Experimental observation

Bcc Nb

A15 Nb3Sn

B2 NbTi

NbTi



Conclusions

 Critical current of Nb3Sn as a function of temperature, magnetic field, strain
 Consensus between most commonly used descriptions
 Same as NbTi except for different temperature dependence of upper critical field

 Ab-initio calculations + microscopic theory: 
 Disorder dependent martensitic transformation, critical temperature, upper critical 

field
 Validated with experimental observations

 Strain sensitivity in Nb3Sn: due to strain-induced distortion of the niobium chains
 Result: Strain sensitivity in superconducting and normal state properties
 Validated with experimental observations

 Other superconductors:
 Nb3Al: Reduced sub-lattice distortion  Reduced strain sensitivity
 Bcc Nb and NbTi: No niobium chains  Barely any strain sensitivity



References

[1] A. Godeke, “Performance Boundaries in Nb3Sn Superconductors”, PhD Thesis, 
University of Twente (2005)

[2] A. Godeke, G. Chlachidze, D. R. Dietderich, A. K. Ghosh, M. Marchevsky, M. G. T. 
Mentink, and G. L. Sabbi, “A Review of Conductor Performance for the LARP High-
Gradient Quadrupole Magnets”, Supercond. Sci. Technol. 26, 095015 (2013)

[3] L. Bottura and B. Bordini “Jc(B,T,ε) Parameterization for the ITER Nb3Sn Production”, 
IEEE Trans. 19, p 1521 (2009)

[4] M. G. T. Mentink, “Critical surface parameterization of high Jc RRP Nb3Sn Strand”, 
Internship report, University of Twente / LBNL (2008) 

[5] B. Bordini, A. Ballarino, and L. Oberli, “Critical Current measurements at 1.9 K and 
Temperature Scaling”, CERN/LARP Video-Meeting, June 30th (2014)

[6] J. W. Ekin, “Unified Scaling Law for Flux Pinning in Practical Superconductors: I. 
Separability postulate, raw scaling data and parameterization at moderate strains”, SuST
23, 083001 (2010)

[7] X. F. Lu, D. M. J. Taylor, and D. P. Hampshire, “Critical Current Scaling Laws for 
Advanced Nb3Sn Superconducting Strands for Fusion Applications with Six Free 
Parameters”, SuST 21, 105016 (2008)

[8] L. Bottura, “A Practical Fit for the Critical Surface of NbTi”, IEEE Trans. Appl. Supercond. 
10, 1054 (2000)

[9] P. Giannozzi et al. “Quantum Espresso: A Modular and Open-Source Software 
Project for Quantum Simulations of Materials”, J. Phys. Cond. Matt. 21, 395502 (2009) 

[10] L.F. Mattheis and L. R. Testardi, “Electron-lifetime effects on properties of Nb3Sn, Nb3Ge, and Ti-V-Cr alloys”, Phys. Rev. B. 
20, 2196 (1979)

[11] W. D. Markiewicz, “Elastic stiffness model for the critical temperature Tc of Nb3Sn including strain dependence”, Cryog. 
44, 767 (2004)

[12] T. Takeuchi, “Nb3Al Conductors for High-Field Applications”, Supercond. Sci. Techn. 13, 
R101-R119 (2000)

[13] J. Ekin, “Unified Scaling Law for Flux Pinning in Practical Superconductors: I. Separability
postulate, raw scaling data and parameterization at moderate strains”, Supercond. Sci. Techn. 
23, 083001 (2010)


