

Computational and experimental investigation of hydroformed niobium tubes for SRF cavities

Hyun Sung Kim¹, Mike Sumption¹, Hojun Lim², Lance Cooley³, and Edward Collings²

¹ The Ohio State University

- ² Sandia National Laboratories
- ³ Fermi National Accelerator Laboratory

Department of Materials Science & Engineering Center for Superconducting & Magnetic Materials

Contents

- 1. Introduction
- 2. Research Outline
- 3. Experimental results
- 4. Simulation results
- 5. Concluding summary & Future work

Objective

Testing the **hydroformability** using **hydraulic tube bulge test** in preparation for the hydroforming of multi-cell cavities

welded nine-cell cavity

hydroformed nine-cell cavity

- 1. Obtain the accurate flow stress curve of tubular materials
- 2. Construct the simulation model

Simulation strategy

Finite Element Method ABAQUS Crystal plasticity (CP)– FEM ABAQUS User material subroutine (UMAT)

Multi scale

Research Outline

Experimental Materials

1. The Tube

- OD: 2.5" = 63.5 mm
- Thickness: 0.065" = 1.65 mm
- Heat treated at 600 °C for 1 hr

2. The tensile sample

- Tensile test specimens were cut from the tube with an ASTM standard dimension.
- Strain rate: 0.002 /s

Hydraulic Bulge Test

OSU's Press for Hydraulic Bulge Testing

Press: Max. clamping force of 45 tons, provided by a small hydraulic press
Hydraulic Pump: Max. pressure of 68.9 MPa, provided by an air assisted hydraulic pump
Hydraulic cylinder: Max. sealing force of 20 tons

Hydraulic Bulge Test_(3)

Analytical Model

 R_{Θ} R_{Z} σ_{Θ} σ_{Z} ε_{Θ} ε_{Z}

Analytical Model

$$R_{\theta} = R_{0} + \Delta R \qquad R_{z} = \frac{\left[\left(w/2\right)^{2} + \Delta R^{2}\right]}{2\Delta R} \qquad \varepsilon_{\theta} = \ln\left(\frac{R_{\theta}}{R_{0}}\right) \qquad \varepsilon_{t} = \ln\left(\frac{t}{t_{0}}\right)$$
$$R_{\theta} \qquad R_{Z} \qquad \sigma_{\theta} \qquad \sigma_{Z} \qquad \varepsilon_{\theta} \qquad \varepsilon_{t}$$
$$Von \text{ Mises Yield Function (Isotropy)}$$
$$\overline{\sigma} = \sqrt{\sigma_{\theta}^{2} - \sigma_{\theta}\sigma_{z} + \sigma_{z}^{2}} \qquad \overline{\varepsilon} = \frac{2}{\sqrt{3}}\sqrt{\varepsilon_{\theta}^{2} + \varepsilon_{\theta}\varepsilon_{t} + \varepsilon_{t}^{2}}$$

Finite Element Simulation

1) Program: ABAQUS/Explicit

2) Geometry

- Axisymmetry cross-section of the tube
- Only half tube was modeled
- The ends of the tube were constrained
- Four-noded solid elements (CAX4R)

3) Elastic properties

- Elastic Modulus: 115 GPa

4) Plastic Properties

- Effective stress – Effective plastic strain obtained from tensile and bulge tests and Crystal Plasticity simulation (Bi-axial force applied)

w/2 = 35mm $R_0 = 31.75mm$ $t_o = 1.65mm$

Crystal plasticity_(1)

- 1) Program: ABAQUS + Fortran
- 2) Model: Taylor model (iso-strain with multiple

slip in each grain

3) Geometry

- Cube shape (One element)
- X and Y axis Symmetry
- Force is applied by displacement

4) Parameters (Hardening formulation)

$$\dot{\gamma}^{\alpha} = \dot{\gamma}_0 \left(\frac{\tau^{\alpha}}{g^{\alpha}}\right)^{1/m} sign(\tau^{\alpha})$$

[Hutchingson, 1976, Peirce et al., 1982]

 $h^{\alpha\beta} = q^{\alpha\beta} h^{(\beta)}$ (Hardening matrix)

Tensile test <determine the parameters> 1. Initial val. of the def. resis. 2. Value of the initial hardening rate 3. Saturation value for the def. resis.

4. Exponent in hardening equation

[Asaro, 1983]

Crystal plasticity_(2)

5) Slip system: 12

File	Edit	Format	View	Help		
MAXI 12	мим	NUMBER	OF	SLI	EP SY	STEMS
SLIP	SY5	STEMS				
1		1	1	1	-1	
1		1	1	-1	0	
1		1	1	0	-1	
1		-1	1	1	1	
1		-1	1	-1	0	
1		-1	1	0	1	
-1		-1	1	1	-1	
-1		-1	1	ī	0	
-1		-1	ī	ō	ĩ	
-1		1	î	ĭ	1	
-1		1	i	1	ō	
-1		1	i	ā	_1	
-1		1	-	0	-1	

6) Euler angles

FIGURE 2.14. Euler angle rotations according to Bunge's convention. (Adapted from [13].)

File Edit Format	: View Help	
KFLAG : 1	SAME CRYSTAL OR	SET OF CRYSTALS AT ALL INTEGRATION POINT
2	DIFFERENT CRYS	STALS AT INTEGRATION POINTS
1		
NCRYS		
TOOD ANCIES	TOD FACH COVETAL	AT AN INTEGRATION BOINT
TUETA	DHT OMEGA	AT AN INTEGRATION POINT
349 2395485	54 36853814	43 8736702
147 551 5291	53 20657973	2 864216018
239, 1823775	86.76586371	141.2295128
238,1350106	85.75172841	321.1628977
278.6786501	134.1087934	196.4718116
123.863735	89.08290503	344.1751746
122.9229383	89.23301997	74.67874606
97.76149675	125.1975808	10.09150565
2.197866102	98.50175822	233.7054739
97.73342182	125.1878405	9.338639103
0.60/335263	96.72329723	55.10020524
1./05855925	97.58445279	234. / 55/050
124 7671210	01 24620266	244.5650219
234 4000205	02 26220275	207 0052782
77.15678852	81.40412466	359.6834232
77.96809676	82,21142219	359. 3373567
78,20300946	81,29239789	358,0252834
157.2150353	103.3885153	157.7369999
37.56139418	153.1132305	238.5567076
338.0731741	73.88577247	47.25755894
337.9975436	73.92244177	47.59503108
95.98360871	103.5924882	52.33110022
350.8358089	139.8/16029	68.95489/69
08./21/0380	94.4//8/303	43.4/340434
240.3130329	85 70417201	219 457201
240.4955140	85 69500559	217 8775527
	0,0000000000000000000000000000000000000	51/.0225557

Biaxial tension test

Engineering stress – Engineering strain curve

Tensile Test Results_(2)

True stress – True plastic strain curve

- Fitting curve to the data using least square method

Bulge Test Results

Tube: Heat treated at 600 °C for 1 hr

Flow stress curves

Effective Stress – plastic strain curve

Hollomon format $\overline{\sigma} =$

$$\overline{\sigma} = K \cdot \overline{\varepsilon}^n$$

	K	п
Macro_Tensile	561.20	0.4596
Macro_Bulge	436.40	0.3776
CP_Biaixal	448.76	0.3635

FEA Simulation results

Combined simulation results using flow stress curves from **tensile test**, **bulge test and microstructure (CP)**

-The simulation results using the flow stress curve from crystal plasticity is well matched to the experimental data.

Concluding Summary & Future Work

- Obtain the three different flow stress curves from tensile, bulge tests and crystal plasticity simulation using texture.
- The simulation results using the flow stress curves from the CP simulation is closer to the experimental data.
- Need to reduce the simulation time for CP

Next Step

- Crystal plasticity simulation of free bulge test
- Crystal plasticity simulation using 3D orientation Map
- Crystal plasticity simulation for niobium tube
- Investigate the texture evolution after deformation

Acknowledgements

-This work was funded by the Unites States Department of Energy through Grant No. DE-SC0004217

- The heat treatment for Nb tube was supported by the Fermilab

